Properties

Label 2-257600-1.1-c1-0-106
Degree $2$
Conductor $257600$
Sign $-1$
Analytic cond. $2056.94$
Root an. cond. $45.3535$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 7-s + 9-s + 2·11-s − 4·13-s + 6·17-s + 4·19-s + 2·21-s + 23-s + 4·27-s − 6·29-s + 4·31-s − 4·33-s − 8·37-s + 8·39-s + 6·41-s − 2·43-s + 8·47-s + 49-s − 12·51-s + 12·53-s − 8·57-s − 6·59-s − 10·61-s − 63-s − 2·67-s − 2·69-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.377·7-s + 1/3·9-s + 0.603·11-s − 1.10·13-s + 1.45·17-s + 0.917·19-s + 0.436·21-s + 0.208·23-s + 0.769·27-s − 1.11·29-s + 0.718·31-s − 0.696·33-s − 1.31·37-s + 1.28·39-s + 0.937·41-s − 0.304·43-s + 1.16·47-s + 1/7·49-s − 1.68·51-s + 1.64·53-s − 1.05·57-s − 0.781·59-s − 1.28·61-s − 0.125·63-s − 0.244·67-s − 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 257600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 257600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(257600\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(2056.94\)
Root analytic conductor: \(45.3535\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 257600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
23 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75499438207900, −12.46394151939387, −12.09230119904622, −11.69597640672803, −11.44408730113124, −10.59477542073552, −10.43595137720477, −9.889953382838631, −9.412610093625409, −9.034092744512258, −8.412826661844517, −7.649174941872209, −7.340168597718675, −6.993545500390645, −6.295543046397027, −5.742065405526937, −5.623314064442541, −4.909598975245652, −4.611921642830310, −3.748667860633498, −3.350744216130007, −2.741038780537191, −2.042130497564654, −1.196662262411567, −0.7556739778173951, 0, 0.7556739778173951, 1.196662262411567, 2.042130497564654, 2.741038780537191, 3.350744216130007, 3.748667860633498, 4.611921642830310, 4.909598975245652, 5.623314064442541, 5.742065405526937, 6.295543046397027, 6.993545500390645, 7.340168597718675, 7.649174941872209, 8.412826661844517, 9.034092744512258, 9.412610093625409, 9.889953382838631, 10.43595137720477, 10.59477542073552, 11.44408730113124, 11.69597640672803, 12.09230119904622, 12.46394151939387, 12.75499438207900

Graph of the $Z$-function along the critical line