L(s) = 1 | − i·2-s + i·3-s − 4-s + 6-s − 3.37i·7-s + i·8-s − 9-s − 1.37·11-s − i·12-s + 2i·13-s − 3.37·14-s + 16-s + i·17-s + i·18-s − 3.37·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + 0.408·6-s − 1.27i·7-s + 0.353i·8-s − 0.333·9-s − 0.413·11-s − 0.288i·12-s + 0.554i·13-s − 0.901·14-s + 0.250·16-s + 0.242i·17-s + 0.235i·18-s − 0.773·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9086280021\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9086280021\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 - iT \) |
good | 7 | \( 1 + 3.37iT - 7T^{2} \) |
| 11 | \( 1 + 1.37T + 11T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 19 | \( 1 + 3.37T + 19T^{2} \) |
| 23 | \( 1 - 4.37iT - 23T^{2} \) |
| 29 | \( 1 - 2.74T + 29T^{2} \) |
| 31 | \( 1 + 8.11T + 31T^{2} \) |
| 37 | \( 1 - iT - 37T^{2} \) |
| 41 | \( 1 - 4.37T + 41T^{2} \) |
| 43 | \( 1 - 9.37iT - 43T^{2} \) |
| 47 | \( 1 - 7.37iT - 47T^{2} \) |
| 53 | \( 1 + 5.74iT - 53T^{2} \) |
| 59 | \( 1 - 7.11T + 59T^{2} \) |
| 61 | \( 1 - 9.11T + 61T^{2} \) |
| 67 | \( 1 - 5.37iT - 67T^{2} \) |
| 71 | \( 1 - 4.37T + 71T^{2} \) |
| 73 | \( 1 - 8iT - 73T^{2} \) |
| 79 | \( 1 + 6.11T + 79T^{2} \) |
| 83 | \( 1 + 4.37iT - 83T^{2} \) |
| 89 | \( 1 + 8.74T + 89T^{2} \) |
| 97 | \( 1 - 1.25iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.244750983011073717381501716750, −8.391017721208264395389550093674, −7.61171933261582685030063770704, −6.80023349395969865566267926363, −5.77068879690959970073818222810, −4.81637470674570990891967353079, −4.09731127560463502513090494163, −3.52450324864135045525625314546, −2.36711450068850214459224623059, −1.15170760478823635423787717326,
0.32445121078107987619924142662, 2.03420409575606134297047951960, 2.82586232763729123950551301710, 4.04914355762185485333017565869, 5.25888771762156118942773963127, 5.61248554198752612652071989732, 6.48988476649999932679678624958, 7.18346776044950068920349282853, 8.053808910276292519097148777344, 8.642695658898264838396242857778