L(s) = 1 | − i·2-s − i·3-s − 4-s − 6-s + 4i·7-s + i·8-s − 9-s + 2·11-s + i·12-s − 2i·13-s + 4·14-s + 16-s − i·17-s + i·18-s − 8·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s − 0.5·4-s − 0.408·6-s + 1.51i·7-s + 0.353i·8-s − 0.333·9-s + 0.603·11-s + 0.288i·12-s − 0.554i·13-s + 1.06·14-s + 0.250·16-s − 0.242i·17-s + 0.235i·18-s − 1.83·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8073285463\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8073285463\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 + iT \) |
good | 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 19 | \( 1 + 8T + 19T^{2} \) |
| 23 | \( 1 + iT - 23T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + 2T + 31T^{2} \) |
| 37 | \( 1 - 3iT - 37T^{2} \) |
| 41 | \( 1 + T + 41T^{2} \) |
| 43 | \( 1 - 6iT - 43T^{2} \) |
| 47 | \( 1 - 4iT - 47T^{2} \) |
| 53 | \( 1 - 13iT - 53T^{2} \) |
| 59 | \( 1 + 15T + 59T^{2} \) |
| 61 | \( 1 - 5T + 61T^{2} \) |
| 67 | \( 1 + 10iT - 67T^{2} \) |
| 71 | \( 1 + T + 71T^{2} \) |
| 73 | \( 1 - 16iT - 73T^{2} \) |
| 79 | \( 1 + 12T + 79T^{2} \) |
| 83 | \( 1 - 11iT - 83T^{2} \) |
| 89 | \( 1 - 2T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.914147617683957278269128815251, −8.513266821007712667320951346169, −7.72210094517840288875288565481, −6.47707174733260893400457293623, −6.04916120122282390631626381735, −5.08735119759958399972964687477, −4.20433673111469906716071038403, −2.95063153621646548487442655277, −2.38480716153883640442766421381, −1.34996548618509835653470766168,
0.27030444657839510129600609241, 1.78058518827819546049342350544, 3.42797119317678671543979844038, 4.20069463002536196815285492343, 4.55627179694115357332180529950, 5.74148591225785876529250480653, 6.65404525500654111465341399049, 7.02716953861322278269096910719, 8.039339131730361769055049848285, 8.699014297837687460777474835280