L(s) = 1 | + i·2-s + i·3-s − 4-s − 6-s − 4i·7-s − i·8-s − 9-s + 2·11-s − i·12-s + 2i·13-s + 4·14-s + 16-s + i·17-s − i·18-s − 8·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s − 1.51i·7-s − 0.353i·8-s − 0.333·9-s + 0.603·11-s − 0.288i·12-s + 0.554i·13-s + 1.06·14-s + 0.250·16-s + 0.242i·17-s − 0.235i·18-s − 1.83·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8073285463\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8073285463\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 - iT \) |
good | 7 | \( 1 + 4iT - 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 19 | \( 1 + 8T + 19T^{2} \) |
| 23 | \( 1 - iT - 23T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + 2T + 31T^{2} \) |
| 37 | \( 1 + 3iT - 37T^{2} \) |
| 41 | \( 1 + T + 41T^{2} \) |
| 43 | \( 1 + 6iT - 43T^{2} \) |
| 47 | \( 1 + 4iT - 47T^{2} \) |
| 53 | \( 1 + 13iT - 53T^{2} \) |
| 59 | \( 1 + 15T + 59T^{2} \) |
| 61 | \( 1 - 5T + 61T^{2} \) |
| 67 | \( 1 - 10iT - 67T^{2} \) |
| 71 | \( 1 + T + 71T^{2} \) |
| 73 | \( 1 + 16iT - 73T^{2} \) |
| 79 | \( 1 + 12T + 79T^{2} \) |
| 83 | \( 1 + 11iT - 83T^{2} \) |
| 89 | \( 1 - 2T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.699014297837687460777474835280, −8.039339131730361769055049848285, −7.02716953861322278269096910719, −6.65404525500654111465341399049, −5.74148591225785876529250480653, −4.55627179694115357332180529950, −4.20069463002536196815285492343, −3.42797119317678671543979844038, −1.78058518827819546049342350544, −0.27030444657839510129600609241,
1.34996548618509835653470766168, 2.38480716153883640442766421381, 2.95063153621646548487442655277, 4.20433673111469906716071038403, 5.08735119759958399972964687477, 6.04916120122282390631626381735, 6.47707174733260893400457293623, 7.72210094517840288875288565481, 8.513266821007712667320951346169, 8.914147617683957278269128815251