# Properties

 Label 2-2550-5.4-c1-0-18 Degree $2$ Conductor $2550$ Sign $0.447 - 0.894i$ Analytic cond. $20.3618$ Root an. cond. $4.51241$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + i·2-s − i·3-s − 4-s + 6-s − i·8-s − 9-s + 6·11-s + i·12-s + 2i·13-s + 16-s + i·17-s − i·18-s − 4·19-s + 6i·22-s + 5i·23-s − 24-s + ⋯
 L(s)  = 1 + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + 0.408·6-s − 0.353i·8-s − 0.333·9-s + 1.80·11-s + 0.288i·12-s + 0.554i·13-s + 0.250·16-s + 0.242i·17-s − 0.235i·18-s − 0.917·19-s + 1.27i·22-s + 1.04i·23-s − 0.204·24-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$2550$$    =    $$2 \cdot 3 \cdot 5^{2} \cdot 17$$ Sign: $0.447 - 0.894i$ Analytic conductor: $$20.3618$$ Root analytic conductor: $$4.51241$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{2550} (2449, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 2550,\ (\ :1/2),\ 0.447 - 0.894i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$1.726307164$$ $$L(\frac12)$$ $$\approx$$ $$1.726307164$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 - iT$$
3 $$1 + iT$$
5 $$1$$
17 $$1 - iT$$
good7 $$1 - 7T^{2}$$
11 $$1 - 6T + 11T^{2}$$
13 $$1 - 2iT - 13T^{2}$$
19 $$1 + 4T + 19T^{2}$$
23 $$1 - 5iT - 23T^{2}$$
29 $$1 + 29T^{2}$$
31 $$1 + 2T + 31T^{2}$$
37 $$1 - 3iT - 37T^{2}$$
41 $$1 - 5T + 41T^{2}$$
43 $$1 + 2iT - 43T^{2}$$
47 $$1 - 47T^{2}$$
53 $$1 + iT - 53T^{2}$$
59 $$1 - 3T + 59T^{2}$$
61 $$1 - 5T + 61T^{2}$$
67 $$1 + 2iT - 67T^{2}$$
71 $$1 - 5T + 71T^{2}$$
73 $$1 - 73T^{2}$$
79 $$1 - 8T + 79T^{2}$$
83 $$1 - iT - 83T^{2}$$
89 $$1 + 14T + 89T^{2}$$
97 $$1 - 16iT - 97T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$