Properties

Label 2-2550-1.1-c1-0-9
Degree $2$
Conductor $2550$
Sign $1$
Analytic cond. $20.3618$
Root an. cond. $4.51241$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s + 6·11-s − 12-s + 2·13-s + 16-s − 17-s − 18-s + 4·19-s − 6·22-s + 5·23-s + 24-s − 2·26-s − 27-s − 2·31-s − 32-s − 6·33-s + 34-s + 36-s − 3·37-s − 4·38-s − 2·39-s + 5·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 1.80·11-s − 0.288·12-s + 0.554·13-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 0.917·19-s − 1.27·22-s + 1.04·23-s + 0.204·24-s − 0.392·26-s − 0.192·27-s − 0.359·31-s − 0.176·32-s − 1.04·33-s + 0.171·34-s + 1/6·36-s − 0.493·37-s − 0.648·38-s − 0.320·39-s + 0.780·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(20.3618\)
Root analytic conductor: \(4.51241\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.274574394\)
\(L(\frac12)\) \(\approx\) \(1.274574394\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.109480806766652134159179797687, −8.236172648580912518007354741539, −7.23992587981760317588198616085, −6.68657084906175109973094228187, −6.02543455681993560579491524235, −5.07960655642635955288710480794, −4.03131199406379791673102858407, −3.18697731135031892531165139908, −1.69989521813268761889361746891, −0.884857132071887046606476855213, 0.884857132071887046606476855213, 1.69989521813268761889361746891, 3.18697731135031892531165139908, 4.03131199406379791673102858407, 5.07960655642635955288710480794, 6.02543455681993560579491524235, 6.68657084906175109973094228187, 7.23992587981760317588198616085, 8.236172648580912518007354741539, 9.109480806766652134159179797687

Graph of the $Z$-function along the critical line