Properties

Label 2-2535-1.1-c1-0-41
Degree $2$
Conductor $2535$
Sign $1$
Analytic cond. $20.2420$
Root an. cond. $4.49911$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.17·2-s − 3-s + 2.73·4-s − 5-s − 2.17·6-s − 0.443·7-s + 1.59·8-s + 9-s − 2.17·10-s + 1.59·11-s − 2.73·12-s − 0.964·14-s + 15-s − 1.99·16-s + 3.76·17-s + 2.17·18-s + 1.54·19-s − 2.73·20-s + 0.443·21-s + 3.46·22-s + 0.705·23-s − 1.59·24-s + 25-s − 27-s − 1.21·28-s + 2.49·29-s + 2.17·30-s + ⋯
L(s)  = 1  + 1.53·2-s − 0.577·3-s + 1.36·4-s − 0.447·5-s − 0.888·6-s − 0.167·7-s + 0.563·8-s + 0.333·9-s − 0.687·10-s + 0.480·11-s − 0.788·12-s − 0.257·14-s + 0.258·15-s − 0.499·16-s + 0.913·17-s + 0.512·18-s + 0.354·19-s − 0.610·20-s + 0.0967·21-s + 0.738·22-s + 0.147·23-s − 0.325·24-s + 0.200·25-s − 0.192·27-s − 0.228·28-s + 0.464·29-s + 0.397·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2535 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2535 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2535\)    =    \(3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(20.2420\)
Root analytic conductor: \(4.49911\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2535,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.364847383\)
\(L(\frac12)\) \(\approx\) \(3.364847383\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
13 \( 1 \)
good2 \( 1 - 2.17T + 2T^{2} \)
7 \( 1 + 0.443T + 7T^{2} \)
11 \( 1 - 1.59T + 11T^{2} \)
17 \( 1 - 3.76T + 17T^{2} \)
19 \( 1 - 1.54T + 19T^{2} \)
23 \( 1 - 0.705T + 23T^{2} \)
29 \( 1 - 2.49T + 29T^{2} \)
31 \( 1 - 6.18T + 31T^{2} \)
37 \( 1 - 10.3T + 37T^{2} \)
41 \( 1 - 6.02T + 41T^{2} \)
43 \( 1 - 4.72T + 43T^{2} \)
47 \( 1 - 5.41T + 47T^{2} \)
53 \( 1 - 5.51T + 53T^{2} \)
59 \( 1 - 8.72T + 59T^{2} \)
61 \( 1 + 9.73T + 61T^{2} \)
67 \( 1 + 13.6T + 67T^{2} \)
71 \( 1 + 15.1T + 71T^{2} \)
73 \( 1 - 10.7T + 73T^{2} \)
79 \( 1 - 10.7T + 79T^{2} \)
83 \( 1 + 9.12T + 83T^{2} \)
89 \( 1 - 4.75T + 89T^{2} \)
97 \( 1 - 8.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.936121723089860217318773170956, −7.80445072421324979278110006792, −7.14264917217740755200061555961, −6.18586784260321296075423182302, −5.84277852529084063988665165202, −4.80111232549878963614820562757, −4.28648467496177210343755690342, −3.41376348200194829867870578848, −2.57868157691315766289305029873, −0.984903352843816885537772188385, 0.984903352843816885537772188385, 2.57868157691315766289305029873, 3.41376348200194829867870578848, 4.28648467496177210343755690342, 4.80111232549878963614820562757, 5.84277852529084063988665165202, 6.18586784260321296075423182302, 7.14264917217740755200061555961, 7.80445072421324979278110006792, 8.936121723089860217318773170956

Graph of the $Z$-function along the critical line