Properties

Label 2-2535-1.1-c1-0-24
Degree $2$
Conductor $2535$
Sign $1$
Analytic cond. $20.2420$
Root an. cond. $4.49911$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.339·2-s − 3-s − 1.88·4-s + 5-s + 0.339·6-s + 0.660·7-s + 1.32·8-s + 9-s − 0.339·10-s + 0.679·11-s + 1.88·12-s − 0.224·14-s − 15-s + 3.32·16-s + 7.42·17-s − 0.339·18-s + 0.115·19-s − 1.88·20-s − 0.660·21-s − 0.231·22-s − 7.76·23-s − 1.32·24-s + 25-s − 27-s − 1.24·28-s + 5.54·29-s + 0.339·30-s + ⋯
L(s)  = 1  − 0.240·2-s − 0.577·3-s − 0.942·4-s + 0.447·5-s + 0.138·6-s + 0.249·7-s + 0.466·8-s + 0.333·9-s − 0.107·10-s + 0.204·11-s + 0.544·12-s − 0.0599·14-s − 0.258·15-s + 0.830·16-s + 1.80·17-s − 0.0801·18-s + 0.0265·19-s − 0.421·20-s − 0.144·21-s − 0.0492·22-s − 1.61·23-s − 0.269·24-s + 0.200·25-s − 0.192·27-s − 0.235·28-s + 1.02·29-s + 0.0620·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2535 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2535 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2535\)    =    \(3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(20.2420\)
Root analytic conductor: \(4.49911\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2535,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.152491063\)
\(L(\frac12)\) \(\approx\) \(1.152491063\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
good2 \( 1 + 0.339T + 2T^{2} \)
7 \( 1 - 0.660T + 7T^{2} \)
11 \( 1 - 0.679T + 11T^{2} \)
17 \( 1 - 7.42T + 17T^{2} \)
19 \( 1 - 0.115T + 19T^{2} \)
23 \( 1 + 7.76T + 23T^{2} \)
29 \( 1 - 5.54T + 29T^{2} \)
31 \( 1 + 9.97T + 31T^{2} \)
37 \( 1 - 9.76T + 37T^{2} \)
41 \( 1 - 4.22T + 41T^{2} \)
43 \( 1 + 0.544T + 43T^{2} \)
47 \( 1 + 5.01T + 47T^{2} \)
53 \( 1 - 0.679T + 53T^{2} \)
59 \( 1 - 2.22T + 59T^{2} \)
61 \( 1 + 4.20T + 61T^{2} \)
67 \( 1 + 7.63T + 67T^{2} \)
71 \( 1 - 7.31T + 71T^{2} \)
73 \( 1 - 8.01T + 73T^{2} \)
79 \( 1 - 9.97T + 79T^{2} \)
83 \( 1 - 1.76T + 83T^{2} \)
89 \( 1 - 13.5T + 89T^{2} \)
97 \( 1 - 9.90T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.069577031669226523013285560164, −7.945951067993634467159190882747, −7.73242805947301398077101233380, −6.40733717475707245380090630623, −5.71833272507841333575111256881, −5.08020820731593002369805513109, −4.20492491555449409220604760591, −3.34536915768417045049606506695, −1.81423992247569161045157607596, −0.76389919425840720076528653597, 0.76389919425840720076528653597, 1.81423992247569161045157607596, 3.34536915768417045049606506695, 4.20492491555449409220604760591, 5.08020820731593002369805513109, 5.71833272507841333575111256881, 6.40733717475707245380090630623, 7.73242805947301398077101233380, 7.945951067993634467159190882747, 9.069577031669226523013285560164

Graph of the $Z$-function along the critical line