| L(s)  = 1 | − 2.64i·2-s   − 0.454·3-s   − 2.99·4-s   − 5.27·5-s   + 1.20i·6-s   + 3.36i·7-s   − 2.66i·8-s   − 8.79·9-s   + 13.9i·10-s   + (4.03 − 10.2i)11-s   + 1.36·12-s   + 22.4i·13-s   + 8.91·14-s   + 2.40·15-s   − 19.0·16-s   + 19.8i·17-s  + ⋯ | 
| L(s)  = 1 | − 1.32i·2-s   − 0.151·3-s   − 0.748·4-s   − 1.05·5-s   + 0.200i·6-s   + 0.481i·7-s   − 0.332i·8-s   − 0.977·9-s   + 1.39i·10-s   + (0.367 − 0.930i)11-s   + 0.113·12-s   + 1.72i·13-s   + 0.636·14-s   + 0.160·15-s   − 1.18·16-s   + 1.16i·17-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.367 - 0.930i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.367 - 0.930i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{3}{2})\) | \(\approx\) | \(0.191207 + 0.130098i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.191207 + 0.130098i\) | 
    
        
      | \(L(2)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 11 | \( 1 + (-4.03 + 10.2i)T \) | 
|  | 23 | \( 1 - 4.79T \) | 
| good | 2 | \( 1 + 2.64iT - 4T^{2} \) | 
|  | 3 | \( 1 + 0.454T + 9T^{2} \) | 
|  | 5 | \( 1 + 5.27T + 25T^{2} \) | 
|  | 7 | \( 1 - 3.36iT - 49T^{2} \) | 
|  | 13 | \( 1 - 22.4iT - 169T^{2} \) | 
|  | 17 | \( 1 - 19.8iT - 289T^{2} \) | 
|  | 19 | \( 1 - 10.9iT - 361T^{2} \) | 
|  | 29 | \( 1 - 7.02iT - 841T^{2} \) | 
|  | 31 | \( 1 + 27.2T + 961T^{2} \) | 
|  | 37 | \( 1 + 62.0T + 1.36e3T^{2} \) | 
|  | 41 | \( 1 + 20.1iT - 1.68e3T^{2} \) | 
|  | 43 | \( 1 + 79.7iT - 1.84e3T^{2} \) | 
|  | 47 | \( 1 - 8.66T + 2.20e3T^{2} \) | 
|  | 53 | \( 1 + 67.8T + 2.80e3T^{2} \) | 
|  | 59 | \( 1 + 8.14T + 3.48e3T^{2} \) | 
|  | 61 | \( 1 - 81.2iT - 3.72e3T^{2} \) | 
|  | 67 | \( 1 + 37.3T + 4.48e3T^{2} \) | 
|  | 71 | \( 1 + 48.1T + 5.04e3T^{2} \) | 
|  | 73 | \( 1 - 34.8iT - 5.32e3T^{2} \) | 
|  | 79 | \( 1 + 75.0iT - 6.24e3T^{2} \) | 
|  | 83 | \( 1 + 22.7iT - 6.88e3T^{2} \) | 
|  | 89 | \( 1 + 172.T + 7.92e3T^{2} \) | 
|  | 97 | \( 1 - 27.8T + 9.40e3T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−11.92488442871395929863990303464, −11.23053177018443805635634121322, −10.52950848067412702580533391336, −9.017545834817303517389160982308, −8.589169554554148185250181044061, −7.02219219277105303525161659986, −5.79731307760037422689003107261, −4.10448983061821665372530520270, −3.38046223666333241935952140782, −1.82611014602338636796435838536, 
0.11795954656151824315955596769, 3.06620617633488614041780188018, 4.65282781524549288471765379128, 5.54825301202397630034904586577, 6.83599277033581153012671439327, 7.60223269004010601573947338681, 8.245881480368499940815134725680, 9.410223384601738040512109897134, 10.84459318543569494234871630911, 11.58225344292823292053885365196
