L(s) = 1 | + (−0.974 − 0.222i)3-s + (0.222 + 0.974i)4-s + (−0.137 + 0.602i)7-s + (0.900 + 0.433i)9-s − i·12-s + (−1.45 + 0.702i)13-s + (−0.900 + 0.433i)16-s + (−1.57 + 0.360i)19-s + (0.268 − 0.556i)21-s + (−0.222 − 0.974i)25-s + (−0.781 − 0.623i)27-s − 0.618·28-s + (0.483 + 0.385i)31-s + (−0.222 + 0.974i)36-s + (0.702 − 1.45i)37-s + ⋯ |
L(s) = 1 | + (−0.974 − 0.222i)3-s + (0.222 + 0.974i)4-s + (−0.137 + 0.602i)7-s + (0.900 + 0.433i)9-s − i·12-s + (−1.45 + 0.702i)13-s + (−0.900 + 0.433i)16-s + (−1.57 + 0.360i)19-s + (0.268 − 0.556i)21-s + (−0.222 − 0.974i)25-s + (−0.781 − 0.623i)27-s − 0.618·28-s + (0.483 + 0.385i)31-s + (−0.222 + 0.974i)36-s + (0.702 − 1.45i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0495i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0495i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3359382533\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3359382533\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.974 + 0.222i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 5 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 7 | \( 1 + (0.137 - 0.602i)T + (-0.900 - 0.433i)T^{2} \) |
| 11 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 13 | \( 1 + (1.45 - 0.702i)T + (0.623 - 0.781i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (1.57 - 0.360i)T + (0.900 - 0.433i)T^{2} \) |
| 23 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 31 | \( 1 + (-0.483 - 0.385i)T + (0.222 + 0.974i)T^{2} \) |
| 37 | \( 1 + (-0.702 + 1.45i)T + (-0.623 - 0.781i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (0.483 - 0.385i)T + (0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 53 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (0.602 + 0.137i)T + (0.900 + 0.433i)T^{2} \) |
| 67 | \( 1 + (1.45 + 0.702i)T + (0.623 + 0.781i)T^{2} \) |
| 71 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (1.26 - 1.00i)T + (0.222 - 0.974i)T^{2} \) |
| 79 | \( 1 + (0.702 - 1.45i)T + (-0.623 - 0.781i)T^{2} \) |
| 83 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 89 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 97 | \( 1 + (0.602 - 0.137i)T + (0.900 - 0.433i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.455703570988303826982099973474, −8.617078210803652856893202883438, −7.82966673906420623055478213135, −7.09680113185899957424189483444, −6.46772576387370916003784096574, −5.72890020287675841636861433267, −4.57673440509508641815459821595, −4.16991639419571531707540813933, −2.66774093728438258676815737183, −1.99938036888486948333436947948,
0.23579361826986376441570693428, 1.58068628289035731063943644014, 2.82134035216879979010721181071, 4.27778259241786562185171337656, 4.80584813226122737149054685751, 5.61637063204009888949230578463, 6.34034978396148806400783930557, 7.01813902484060018116721467357, 7.69057438958405588775035681286, 8.953017645285392542304450402164