# Properties

 Label 2-2520-840.59-c0-0-6 Degree $2$ Conductor $2520$ Sign $-0.999 - 0.0431i$ Analytic cond. $1.25764$ Root an. cond. $1.12144$ Motivic weight $0$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + (−0.707 − 0.707i)7-s + 0.999i·8-s + (0.866 + 0.499i)10-s + (−0.448 − 0.258i)11-s − 1.93i·13-s + (0.965 + 0.258i)14-s + (−0.5 − 0.866i)16-s + (−0.866 + 0.5i)19-s − 0.999·20-s + 0.517·22-s + (−1.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s + (0.965 + 1.67i)26-s + ⋯
 L(s)  = 1 + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + (−0.707 − 0.707i)7-s + 0.999i·8-s + (0.866 + 0.499i)10-s + (−0.448 − 0.258i)11-s − 1.93i·13-s + (0.965 + 0.258i)14-s + (−0.5 − 0.866i)16-s + (−0.866 + 0.5i)19-s − 0.999·20-s + 0.517·22-s + (−1.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s + (0.965 + 1.67i)26-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 2520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0431i)\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 2520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0431i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$2520$$    =    $$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$$ Sign: $-0.999 - 0.0431i$ Analytic conductor: $$1.25764$$ Root analytic conductor: $$1.12144$$ Motivic weight: $$0$$ Rational: no Arithmetic: yes Character: $\chi_{2520} (899, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 2520,\ (\ :0),\ -0.999 - 0.0431i)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$0.1541896512$$ $$L(\frac12)$$ $$\approx$$ $$0.1541896512$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (0.866 - 0.5i)T$$
3 $$1$$
5 $$1 + (0.5 + 0.866i)T$$
7 $$1 + (0.707 + 0.707i)T$$
good11 $$1 + (0.448 + 0.258i)T + (0.5 + 0.866i)T^{2}$$
13 $$1 + 1.93iT - T^{2}$$
17 $$1 + (0.5 + 0.866i)T^{2}$$
19 $$1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2}$$
23 $$1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2}$$
29 $$1 + T^{2}$$
31 $$1 + (-0.5 - 0.866i)T^{2}$$
37 $$1 + (-0.965 - 1.67i)T + (-0.5 + 0.866i)T^{2}$$
41 $$1 + 0.517T + T^{2}$$
43 $$1 - T^{2}$$
47 $$1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2}$$
53 $$1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2}$$
59 $$1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2}$$
61 $$1 + (-0.5 + 0.866i)T^{2}$$
67 $$1 + (0.5 + 0.866i)T^{2}$$
71 $$1 + T^{2}$$
73 $$1 + (-0.5 - 0.866i)T^{2}$$
79 $$1 + (0.5 - 0.866i)T^{2}$$
83 $$1 - T^{2}$$
89 $$1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2}$$
97 $$1 + T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$