Properties

Label 2-2520-5.4-c1-0-14
Degree $2$
Conductor $2520$
Sign $0.662 - 0.749i$
Analytic cond. $20.1223$
Root an. cond. $4.48578$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.48 + 1.67i)5-s i·7-s − 0.387·11-s − 2.96i·13-s + 3.35i·17-s + 2.96·19-s + 0.962i·23-s + (−0.612 − 4.96i)25-s + 1.22·29-s + 2.96·31-s + (1.67 + 1.48i)35-s − 5.92i·37-s − 1.03·41-s + 10.7i·43-s + 3.22i·47-s + ⋯
L(s)  = 1  + (−0.662 + 0.749i)5-s − 0.377i·7-s − 0.116·11-s − 0.821i·13-s + 0.812i·17-s + 0.679·19-s + 0.200i·23-s + (−0.122 − 0.992i)25-s + 0.227·29-s + 0.532·31-s + (0.283 + 0.250i)35-s − 0.974i·37-s − 0.162·41-s + 1.63i·43-s + 0.470i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.662 - 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2520\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $0.662 - 0.749i$
Analytic conductor: \(20.1223\)
Root analytic conductor: \(4.48578\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2520} (1009, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2520,\ (\ :1/2),\ 0.662 - 0.749i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.410905977\)
\(L(\frac12)\) \(\approx\) \(1.410905977\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.48 - 1.67i)T \)
7 \( 1 + iT \)
good11 \( 1 + 0.387T + 11T^{2} \)
13 \( 1 + 2.96iT - 13T^{2} \)
17 \( 1 - 3.35iT - 17T^{2} \)
19 \( 1 - 2.96T + 19T^{2} \)
23 \( 1 - 0.962iT - 23T^{2} \)
29 \( 1 - 1.22T + 29T^{2} \)
31 \( 1 - 2.96T + 31T^{2} \)
37 \( 1 + 5.92iT - 37T^{2} \)
41 \( 1 + 1.03T + 41T^{2} \)
43 \( 1 - 10.7iT - 43T^{2} \)
47 \( 1 - 3.22iT - 47T^{2} \)
53 \( 1 - 5.66iT - 53T^{2} \)
59 \( 1 - 3.22T + 59T^{2} \)
61 \( 1 - 14.6T + 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 + 5.53T + 71T^{2} \)
73 \( 1 - 6.18iT - 73T^{2} \)
79 \( 1 - 13.9T + 79T^{2} \)
83 \( 1 + 3.22iT - 83T^{2} \)
89 \( 1 - 3.73T + 89T^{2} \)
97 \( 1 - 7.73iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.949033358425197978095671490485, −7.945267296020072153243906137263, −7.69664127292486778614630581988, −6.74109606981050425460159713956, −6.03335941324992163157957194901, −5.06484050231403991468046612239, −4.05532566677377293450828484909, −3.35770122588124166342951182956, −2.46544849542397634251459926215, −0.934014657597847936100595320934, 0.61722806396296162713236386538, 1.92787604463842907377696639753, 3.10799741175284006871333470341, 4.05350306090576101591252575665, 4.90598111915473289064967176161, 5.47319099502635971253798709573, 6.64698225085587035244092183584, 7.27338110184000673918904854565, 8.195852827051917876547229334321, 8.730604011946123710626834054047

Graph of the $Z$-function along the critical line