Properties

Label 2-2520-2520.349-c0-0-4
Degree $2$
Conductor $2520$
Sign $0.573 + 0.819i$
Analytic cond. $1.25764$
Root an. cond. $1.12144$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (−0.707 − 0.707i)3-s + (0.499 + 0.866i)4-s + (0.965 − 0.258i)5-s + (0.258 + 0.965i)6-s + (0.866 + 0.5i)7-s − 0.999i·8-s + 1.00i·9-s + (−0.965 − 0.258i)10-s + (0.258 − 0.965i)12-s + (1.22 − 0.707i)13-s + (−0.499 − 0.866i)14-s + (−0.866 − 0.500i)15-s + (−0.5 + 0.866i)16-s + (0.500 − 0.866i)18-s + 0.517·19-s + ⋯
L(s)  = 1  + (−0.866 − 0.5i)2-s + (−0.707 − 0.707i)3-s + (0.499 + 0.866i)4-s + (0.965 − 0.258i)5-s + (0.258 + 0.965i)6-s + (0.866 + 0.5i)7-s − 0.999i·8-s + 1.00i·9-s + (−0.965 − 0.258i)10-s + (0.258 − 0.965i)12-s + (1.22 − 0.707i)13-s + (−0.499 − 0.866i)14-s + (−0.866 − 0.500i)15-s + (−0.5 + 0.866i)16-s + (0.500 − 0.866i)18-s + 0.517·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.573 + 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.573 + 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2520\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $0.573 + 0.819i$
Analytic conductor: \(1.25764\)
Root analytic conductor: \(1.12144\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2520} (349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2520,\ (\ :0),\ 0.573 + 0.819i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8968825876\)
\(L(\frac12)\) \(\approx\) \(0.8968825876\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 + 0.5i)T \)
3 \( 1 + (0.707 + 0.707i)T \)
5 \( 1 + (-0.965 + 0.258i)T \)
7 \( 1 + (-0.866 - 0.5i)T \)
good11 \( 1 + (0.5 + 0.866i)T^{2} \)
13 \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \)
17 \( 1 + T^{2} \)
19 \( 1 - 0.517T + T^{2} \)
23 \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \)
29 \( 1 + (0.5 + 0.866i)T^{2} \)
31 \( 1 + (0.5 - 0.866i)T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 + (0.5 - 0.866i)T^{2} \)
43 \( 1 + (-0.5 - 0.866i)T^{2} \)
47 \( 1 + (-0.5 - 0.866i)T^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \)
61 \( 1 + (0.258 - 0.448i)T + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (-0.5 + 0.866i)T^{2} \)
71 \( 1 - 1.73T + T^{2} \)
73 \( 1 + T^{2} \)
79 \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \)
83 \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (-0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.885998025782073653136813467270, −8.245397941052528534429490066287, −7.69880433052784916615484063118, −6.71114960200923401479929273623, −5.82764455482139827662304924212, −5.44453923860002821342851477174, −4.13794906804047909800570970391, −2.77463542601717647382404353591, −1.80908979797878936847769555546, −1.17084235097208444509567113522, 1.14900841890967768459374858563, 2.14024758033673906357569617643, 3.71736458147342043039422711240, 4.72924604149806789351937969806, 5.48618834714801229239884378871, 6.27003997348337872234126665172, 6.67815691251148048973292909695, 7.75466315218741579834870657777, 8.611612988160453906142389892325, 9.210941628265493328929074396418

Graph of the $Z$-function along the critical line