Properties

Label 2-252-63.20-c3-0-0
Degree $2$
Conductor $252$
Sign $-0.995 + 0.0921i$
Analytic cond. $14.8684$
Root an. cond. $3.85596$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.81 − 1.94i)3-s + (9.12 + 15.7i)5-s + (−9.48 + 15.9i)7-s + (19.4 + 18.7i)9-s + (−49.3 − 28.4i)11-s + (9.36 − 5.40i)13-s + (−13.2 − 93.8i)15-s + 65.2·17-s − 36.6i·19-s + (76.6 − 58.2i)21-s + (−70.2 + 40.5i)23-s + (−103. + 179. i)25-s + (−57.3 − 128. i)27-s + (−233. − 134. i)29-s + (−117. + 67.9i)31-s + ⋯
L(s)  = 1  + (−0.927 − 0.373i)3-s + (0.815 + 1.41i)5-s + (−0.511 + 0.859i)7-s + (0.720 + 0.693i)9-s + (−1.35 − 0.780i)11-s + (0.199 − 0.115i)13-s + (−0.228 − 1.61i)15-s + 0.931·17-s − 0.441i·19-s + (0.796 − 0.605i)21-s + (−0.636 + 0.367i)23-s + (−0.830 + 1.43i)25-s + (−0.408 − 0.912i)27-s + (−1.49 − 0.863i)29-s + (−0.682 + 0.393i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 + 0.0921i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.995 + 0.0921i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $-0.995 + 0.0921i$
Analytic conductor: \(14.8684\)
Root analytic conductor: \(3.85596\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{252} (209, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 252,\ (\ :3/2),\ -0.995 + 0.0921i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3299417664\)
\(L(\frac12)\) \(\approx\) \(0.3299417664\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (4.81 + 1.94i)T \)
7 \( 1 + (9.48 - 15.9i)T \)
good5 \( 1 + (-9.12 - 15.7i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (49.3 + 28.4i)T + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 + (-9.36 + 5.40i)T + (1.09e3 - 1.90e3i)T^{2} \)
17 \( 1 - 65.2T + 4.91e3T^{2} \)
19 \( 1 + 36.6iT - 6.85e3T^{2} \)
23 \( 1 + (70.2 - 40.5i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + (233. + 134. i)T + (1.21e4 + 2.11e4i)T^{2} \)
31 \( 1 + (117. - 67.9i)T + (1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + 125.T + 5.06e4T^{2} \)
41 \( 1 + (117. + 203. i)T + (-3.44e4 + 5.96e4i)T^{2} \)
43 \( 1 + (-22.6 + 39.2i)T + (-3.97e4 - 6.88e4i)T^{2} \)
47 \( 1 + (241. - 417. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 - 70.1iT - 1.48e5T^{2} \)
59 \( 1 + (-176. - 306. i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (-512. - 295. i)T + (1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (261. + 453. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 - 895. iT - 3.57e5T^{2} \)
73 \( 1 + 982. iT - 3.89e5T^{2} \)
79 \( 1 + (-510. + 883. i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 + (-152. + 263. i)T + (-2.85e5 - 4.95e5i)T^{2} \)
89 \( 1 + 1.02e3T + 7.04e5T^{2} \)
97 \( 1 + (677. + 391. i)T + (4.56e5 + 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.98103544673852403494824132128, −11.00661068017508950641918836104, −10.40762140076475203451397982353, −9.521372062558859882693546467997, −7.923726219628319304291151299103, −6.93796692549929538918119971088, −5.79078049445389186171641428345, −5.57689661149507282002032702031, −3.23911092279714296406128909419, −2.13099067289970346477648989661, 0.14129260611955231192827536535, 1.58433106274437917493705866698, 3.87632676873586005382439391368, 5.08579539203614164107981798821, 5.62871706835307641237593279001, 6.98056261898205990432492440276, 8.182830002767395290870407759258, 9.666264056016575403839579821640, 9.935410058080061201120010908572, 10.95525346899163773925139219650

Graph of the $Z$-function along the critical line