Properties

Label 2-252-21.5-c3-0-3
Degree $2$
Conductor $252$
Sign $0.928 - 0.370i$
Analytic cond. $14.8684$
Root an. cond. $3.85596$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.41 + 5.91i)5-s + (−14.9 − 10.9i)7-s + (50.5 − 29.1i)11-s + 38.5i·13-s + (−16.1 − 27.9i)17-s + (107. + 62.2i)19-s + (174. + 100. i)23-s + (39.2 + 67.9i)25-s − 104. i·29-s + (−240. + 138. i)31-s + (115. − 50.9i)35-s + (23.8 − 41.2i)37-s + 387.·41-s + 272.·43-s + (81.5 − 141. i)47-s + ⋯
L(s)  = 1  + (−0.305 + 0.528i)5-s + (−0.806 − 0.591i)7-s + (1.38 − 0.799i)11-s + 0.822i·13-s + (−0.230 − 0.398i)17-s + (1.30 + 0.751i)19-s + (1.57 + 0.911i)23-s + (0.313 + 0.543i)25-s − 0.668i·29-s + (−1.39 + 0.805i)31-s + (0.558 − 0.245i)35-s + (0.105 − 0.183i)37-s + 1.47·41-s + 0.966·43-s + (0.253 − 0.438i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $0.928 - 0.370i$
Analytic conductor: \(14.8684\)
Root analytic conductor: \(3.85596\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{252} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 252,\ (\ :3/2),\ 0.928 - 0.370i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.666221183\)
\(L(\frac12)\) \(\approx\) \(1.666221183\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (14.9 + 10.9i)T \)
good5 \( 1 + (3.41 - 5.91i)T + (-62.5 - 108. i)T^{2} \)
11 \( 1 + (-50.5 + 29.1i)T + (665.5 - 1.15e3i)T^{2} \)
13 \( 1 - 38.5iT - 2.19e3T^{2} \)
17 \( 1 + (16.1 + 27.9i)T + (-2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (-107. - 62.2i)T + (3.42e3 + 5.94e3i)T^{2} \)
23 \( 1 + (-174. - 100. i)T + (6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + 104. iT - 2.43e4T^{2} \)
31 \( 1 + (240. - 138. i)T + (1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + (-23.8 + 41.2i)T + (-2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 - 387.T + 6.89e4T^{2} \)
43 \( 1 - 272.T + 7.95e4T^{2} \)
47 \( 1 + (-81.5 + 141. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (-313. + 181. i)T + (7.44e4 - 1.28e5i)T^{2} \)
59 \( 1 + (-105. - 183. i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (202. + 117. i)T + (1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (262. + 454. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 - 348. iT - 3.57e5T^{2} \)
73 \( 1 + (-465. + 268. i)T + (1.94e5 - 3.36e5i)T^{2} \)
79 \( 1 + (362. - 628. i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 - 392.T + 5.71e5T^{2} \)
89 \( 1 + (430. - 744. i)T + (-3.52e5 - 6.10e5i)T^{2} \)
97 \( 1 + 978. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.46036079102081671753507003473, −10.94866266387134251321788121173, −9.522440744612369481487378924519, −9.064901253227257415738199776501, −7.38106055876219546081992369154, −6.85121102820222006137621474497, −5.65888245912891816604788517676, −3.95875061201793868481170937090, −3.20104354176271225602730418780, −1.09139915643883468909744306563, 0.889311145770136357043106808631, 2.78238634345708709309443282419, 4.13387034536692765983983993175, 5.34840089039768394917941588316, 6.55564567245134980592387787616, 7.50677821620670521424373749322, 9.042783842720600062790903922772, 9.228791300215412062260970000426, 10.60682316679174346494775363881, 11.70055678877625669734481137413

Graph of the $Z$-function along the critical line