Properties

Label 2-252-21.5-c3-0-1
Degree $2$
Conductor $252$
Sign $-0.989 + 0.147i$
Analytic cond. $14.8684$
Root an. cond. $3.85596$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−10.1 + 17.5i)5-s + (12.0 + 14.0i)7-s + (−15.4 + 8.92i)11-s − 33.1i·13-s + (−22.9 − 39.6i)17-s + (−35.0 − 20.2i)19-s + (−69.7 − 40.2i)23-s + (−142. − 246. i)25-s + 233. i·29-s + (−195. + 112. i)31-s + (−368. + 68.3i)35-s + (135. − 234. i)37-s − 154.·41-s + 367.·43-s + (−263. + 457. i)47-s + ⋯
L(s)  = 1  + (−0.905 + 1.56i)5-s + (0.649 + 0.760i)7-s + (−0.423 + 0.244i)11-s − 0.707i·13-s + (−0.326 − 0.566i)17-s + (−0.422 − 0.244i)19-s + (−0.632 − 0.365i)23-s + (−1.14 − 1.97i)25-s + 1.49i·29-s + (−1.13 + 0.653i)31-s + (−1.78 + 0.329i)35-s + (0.601 − 1.04i)37-s − 0.588·41-s + 1.30·43-s + (−0.818 + 1.41i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 + 0.147i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.989 + 0.147i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $-0.989 + 0.147i$
Analytic conductor: \(14.8684\)
Root analytic conductor: \(3.85596\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{252} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 252,\ (\ :3/2),\ -0.989 + 0.147i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5824054087\)
\(L(\frac12)\) \(\approx\) \(0.5824054087\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-12.0 - 14.0i)T \)
good5 \( 1 + (10.1 - 17.5i)T + (-62.5 - 108. i)T^{2} \)
11 \( 1 + (15.4 - 8.92i)T + (665.5 - 1.15e3i)T^{2} \)
13 \( 1 + 33.1iT - 2.19e3T^{2} \)
17 \( 1 + (22.9 + 39.6i)T + (-2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (35.0 + 20.2i)T + (3.42e3 + 5.94e3i)T^{2} \)
23 \( 1 + (69.7 + 40.2i)T + (6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 - 233. iT - 2.43e4T^{2} \)
31 \( 1 + (195. - 112. i)T + (1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + (-135. + 234. i)T + (-2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 + 154.T + 6.89e4T^{2} \)
43 \( 1 - 367.T + 7.95e4T^{2} \)
47 \( 1 + (263. - 457. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (-78.8 + 45.5i)T + (7.44e4 - 1.28e5i)T^{2} \)
59 \( 1 + (312. + 541. i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (78.8 + 45.5i)T + (1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (431. + 747. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 + 303. iT - 3.57e5T^{2} \)
73 \( 1 + (999. - 576. i)T + (1.94e5 - 3.36e5i)T^{2} \)
79 \( 1 + (-3.48 + 6.02i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 - 815.T + 5.71e5T^{2} \)
89 \( 1 + (-155. + 269. i)T + (-3.52e5 - 6.10e5i)T^{2} \)
97 \( 1 - 1.83e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.97295630983645370692395251745, −10.93261427001726563926113602447, −10.65337927446301343527845678072, −9.156162129596685071187364800439, −7.962865010730016848402613099073, −7.30239164387720981021849358636, −6.16571079170843465018307600328, −4.83132911632816296852861109243, −3.37610133805324699445783355033, −2.34852543885013009298244581673, 0.22680378513484566205493684715, 1.64304524735341496611219640428, 3.99642645836031325199527409005, 4.52486610301525285833259490048, 5.80323716720948072471819923767, 7.44899788773553062916298326396, 8.165264355717899273478983253514, 8.928928069226015091631053649306, 10.14603656556159262795896228838, 11.37493294816639488599182050020

Graph of the $Z$-function along the critical line