Properties

Label 2-252-1.1-c5-0-2
Degree $2$
Conductor $252$
Sign $1$
Analytic cond. $40.4167$
Root an. cond. $6.35741$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·5-s + 49·7-s + 108·11-s − 346·13-s + 1.39e3·17-s − 1.01e3·19-s + 1.53e3·23-s − 3.08e3·25-s + 3.76e3·29-s − 736·31-s − 294·35-s + 2.05e3·37-s + 1.55e4·41-s + 1.10e4·43-s − 4.56e3·47-s + 2.40e3·49-s + 7.96e3·53-s − 648·55-s + 7.02e3·59-s + 2.68e4·61-s + 2.07e3·65-s + 5.21e4·67-s + 2.54e3·71-s − 9.76e3·73-s + 5.29e3·77-s + 6.86e4·79-s + 6.16e4·83-s + ⋯
L(s)  = 1  − 0.107·5-s + 0.377·7-s + 0.269·11-s − 0.567·13-s + 1.17·17-s − 0.643·19-s + 0.605·23-s − 0.988·25-s + 0.830·29-s − 0.137·31-s − 0.0405·35-s + 0.246·37-s + 1.44·41-s + 0.910·43-s − 0.301·47-s + 1/7·49-s + 0.389·53-s − 0.0288·55-s + 0.262·59-s + 0.924·61-s + 0.0609·65-s + 1.41·67-s + 0.0598·71-s − 0.214·73-s + 0.101·77-s + 1.23·79-s + 0.982·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(40.4167\)
Root analytic conductor: \(6.35741\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 252,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.065885982\)
\(L(\frac12)\) \(\approx\) \(2.065885982\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - p^{2} T \)
good5 \( 1 + 6 T + p^{5} T^{2} \)
11 \( 1 - 108 T + p^{5} T^{2} \)
13 \( 1 + 346 T + p^{5} T^{2} \)
17 \( 1 - 1398 T + p^{5} T^{2} \)
19 \( 1 + 1012 T + p^{5} T^{2} \)
23 \( 1 - 1536 T + p^{5} T^{2} \)
29 \( 1 - 3762 T + p^{5} T^{2} \)
31 \( 1 + 736 T + p^{5} T^{2} \)
37 \( 1 - 2054 T + p^{5} T^{2} \)
41 \( 1 - 15534 T + p^{5} T^{2} \)
43 \( 1 - 11036 T + p^{5} T^{2} \)
47 \( 1 + 4560 T + p^{5} T^{2} \)
53 \( 1 - 7962 T + p^{5} T^{2} \)
59 \( 1 - 7020 T + p^{5} T^{2} \)
61 \( 1 - 26870 T + p^{5} T^{2} \)
67 \( 1 - 52148 T + p^{5} T^{2} \)
71 \( 1 - 2544 T + p^{5} T^{2} \)
73 \( 1 + 9766 T + p^{5} T^{2} \)
79 \( 1 - 68672 T + p^{5} T^{2} \)
83 \( 1 - 61668 T + p^{5} T^{2} \)
89 \( 1 - 41454 T + p^{5} T^{2} \)
97 \( 1 + 111262 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23138089357119679135756667283, −10.21752015582178436864486328537, −9.305923930445000485522421110441, −8.170712503255528215081055833433, −7.33645517829191876582811188243, −6.09874442843746341317367875863, −4.97505711304533382875399774759, −3.79741732738701173555625412285, −2.36176606138213056498122775662, −0.860910255202223071753380982438, 0.860910255202223071753380982438, 2.36176606138213056498122775662, 3.79741732738701173555625412285, 4.97505711304533382875399774759, 6.09874442843746341317367875863, 7.33645517829191876582811188243, 8.170712503255528215081055833433, 9.305923930445000485522421110441, 10.21752015582178436864486328537, 11.23138089357119679135756667283

Graph of the $Z$-function along the critical line