Properties

Label 2-252-1.1-c3-0-5
Degree $2$
Conductor $252$
Sign $-1$
Analytic cond. $14.8684$
Root an. cond. $3.85596$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·5-s + 7·7-s − 36·11-s + 62·13-s − 114·17-s − 76·19-s + 24·23-s − 89·25-s − 54·29-s − 112·31-s − 42·35-s − 178·37-s − 378·41-s − 172·43-s + 192·47-s + 49·49-s + 402·53-s + 216·55-s − 396·59-s + 254·61-s − 372·65-s − 1.01e3·67-s − 840·71-s + 890·73-s − 252·77-s + 80·79-s + 108·83-s + ⋯
L(s)  = 1  − 0.536·5-s + 0.377·7-s − 0.986·11-s + 1.32·13-s − 1.62·17-s − 0.917·19-s + 0.217·23-s − 0.711·25-s − 0.345·29-s − 0.648·31-s − 0.202·35-s − 0.790·37-s − 1.43·41-s − 0.609·43-s + 0.595·47-s + 1/7·49-s + 1.04·53-s + 0.529·55-s − 0.873·59-s + 0.533·61-s − 0.709·65-s − 1.84·67-s − 1.40·71-s + 1.42·73-s − 0.372·77-s + 0.113·79-s + 0.142·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(14.8684\)
Root analytic conductor: \(3.85596\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 252,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - p T \)
good5 \( 1 + 6 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
13 \( 1 - 62 T + p^{3} T^{2} \)
17 \( 1 + 114 T + p^{3} T^{2} \)
19 \( 1 + 4 p T + p^{3} T^{2} \)
23 \( 1 - 24 T + p^{3} T^{2} \)
29 \( 1 + 54 T + p^{3} T^{2} \)
31 \( 1 + 112 T + p^{3} T^{2} \)
37 \( 1 + 178 T + p^{3} T^{2} \)
41 \( 1 + 378 T + p^{3} T^{2} \)
43 \( 1 + 4 p T + p^{3} T^{2} \)
47 \( 1 - 192 T + p^{3} T^{2} \)
53 \( 1 - 402 T + p^{3} T^{2} \)
59 \( 1 + 396 T + p^{3} T^{2} \)
61 \( 1 - 254 T + p^{3} T^{2} \)
67 \( 1 + 1012 T + p^{3} T^{2} \)
71 \( 1 + 840 T + p^{3} T^{2} \)
73 \( 1 - 890 T + p^{3} T^{2} \)
79 \( 1 - 80 T + p^{3} T^{2} \)
83 \( 1 - 108 T + p^{3} T^{2} \)
89 \( 1 - 1638 T + p^{3} T^{2} \)
97 \( 1 - 1010 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02851742986436830150646304293, −10.48109944032639874377566182827, −8.909415316301294582046174060833, −8.306413665781800601275156479431, −7.18515319544684163584848087811, −6.03509074832949923859509344246, −4.74695254805227976499825147575, −3.63460833012397145434805269090, −1.99987871287688285887259941607, 0, 1.99987871287688285887259941607, 3.63460833012397145434805269090, 4.74695254805227976499825147575, 6.03509074832949923859509344246, 7.18515319544684163584848087811, 8.306413665781800601275156479431, 8.909415316301294582046174060833, 10.48109944032639874377566182827, 11.02851742986436830150646304293

Graph of the $Z$-function along the critical line