Properties

Label 2-252-1.1-c3-0-2
Degree $2$
Conductor $252$
Sign $1$
Analytic cond. $14.8684$
Root an. cond. $3.85596$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s − 7·7-s + 40·11-s − 12·13-s + 58·17-s + 26·19-s + 64·23-s − 61·25-s + 62·29-s + 252·31-s − 56·35-s + 26·37-s − 6·41-s + 416·43-s + 396·47-s + 49·49-s + 450·53-s + 320·55-s − 274·59-s − 576·61-s − 96·65-s − 476·67-s + 448·71-s − 158·73-s − 280·77-s − 936·79-s − 530·83-s + ⋯
L(s)  = 1  + 0.715·5-s − 0.377·7-s + 1.09·11-s − 0.256·13-s + 0.827·17-s + 0.313·19-s + 0.580·23-s − 0.487·25-s + 0.397·29-s + 1.46·31-s − 0.270·35-s + 0.115·37-s − 0.0228·41-s + 1.47·43-s + 1.22·47-s + 1/7·49-s + 1.16·53-s + 0.784·55-s − 0.604·59-s − 1.20·61-s − 0.183·65-s − 0.867·67-s + 0.748·71-s − 0.253·73-s − 0.414·77-s − 1.33·79-s − 0.700·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(14.8684\)
Root analytic conductor: \(3.85596\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 252,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.120190885\)
\(L(\frac12)\) \(\approx\) \(2.120190885\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + p T \)
good5 \( 1 - 8 T + p^{3} T^{2} \)
11 \( 1 - 40 T + p^{3} T^{2} \)
13 \( 1 + 12 T + p^{3} T^{2} \)
17 \( 1 - 58 T + p^{3} T^{2} \)
19 \( 1 - 26 T + p^{3} T^{2} \)
23 \( 1 - 64 T + p^{3} T^{2} \)
29 \( 1 - 62 T + p^{3} T^{2} \)
31 \( 1 - 252 T + p^{3} T^{2} \)
37 \( 1 - 26 T + p^{3} T^{2} \)
41 \( 1 + 6 T + p^{3} T^{2} \)
43 \( 1 - 416 T + p^{3} T^{2} \)
47 \( 1 - 396 T + p^{3} T^{2} \)
53 \( 1 - 450 T + p^{3} T^{2} \)
59 \( 1 + 274 T + p^{3} T^{2} \)
61 \( 1 + 576 T + p^{3} T^{2} \)
67 \( 1 + 476 T + p^{3} T^{2} \)
71 \( 1 - 448 T + p^{3} T^{2} \)
73 \( 1 + 158 T + p^{3} T^{2} \)
79 \( 1 + 936 T + p^{3} T^{2} \)
83 \( 1 + 530 T + p^{3} T^{2} \)
89 \( 1 - 390 T + p^{3} T^{2} \)
97 \( 1 - 214 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.75628537027938603421154214709, −10.48303115972460352880204609081, −9.658014651942685287425535691867, −8.917395854202808495786609625430, −7.57408299517192853968114611141, −6.47447226050115250491706782741, −5.59971072853872372959202044264, −4.18394481633716034358041574267, −2.77266402865700337329642290747, −1.15641280375620641116442613763, 1.15641280375620641116442613763, 2.77266402865700337329642290747, 4.18394481633716034358041574267, 5.59971072853872372959202044264, 6.47447226050115250491706782741, 7.57408299517192853968114611141, 8.917395854202808495786609625430, 9.658014651942685287425535691867, 10.48303115972460352880204609081, 11.75628537027938603421154214709

Graph of the $Z$-function along the critical line