L(s) = 1 | − 13.8i·5-s − 3.46·7-s − 48i·11-s + 20.7i·13-s − 96·17-s − 40i·19-s + 110.·23-s − 66.9·25-s − 13.8i·29-s − 204.·31-s + 47.9i·35-s + 297. i·37-s + 288·41-s − 152i·43-s − 554.·47-s + ⋯ |
L(s) = 1 | − 1.23i·5-s − 0.187·7-s − 1.31i·11-s + 0.443i·13-s − 1.36·17-s − 0.482i·19-s + 1.00·23-s − 0.535·25-s − 0.0887i·29-s − 1.18·31-s + 0.231i·35-s + 1.32i·37-s + 1.09·41-s − 0.539i·43-s − 1.72·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 - 0.258i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.5897749124\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5897749124\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 13.8iT - 125T^{2} \) |
| 7 | \( 1 + 3.46T + 343T^{2} \) |
| 11 | \( 1 + 48iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 20.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 96T + 4.91e3T^{2} \) |
| 19 | \( 1 + 40iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 110.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 13.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 204.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 297. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 288T + 6.89e4T^{2} \) |
| 43 | \( 1 + 152iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 554.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 180. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 480iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 755. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 848iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 886.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 538T + 3.89e5T^{2} \) |
| 79 | \( 1 + 1.00e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 432iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.34e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 590T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.590474852056316444081428826730, −8.835836310582732595034376904638, −8.433397318144477148917388767415, −7.09932203002597565994470164810, −6.11639578024126330290441820489, −5.09457672981485053473622289358, −4.26322150389409097728763187995, −2.94771208442251610340594274755, −1.38799773224146188372363016184, −0.17231599488565185040479764797,
1.92878372782111158257271379353, 2.95417428465133995472283705268, 4.10152816305759769137667084923, 5.26892789920994912137480514537, 6.57421767281394597707947129505, 7.02991556412982638618126072465, 7.975654751871508277088270827907, 9.246294415014027579261941866150, 9.933945562282452087185933952145, 10.92283797976619360680728349558