Properties

Label 2-24e2-8.5-c3-0-21
Degree $2$
Conductor $576$
Sign $0.258 + 0.965i$
Analytic cond. $33.9851$
Root an. cond. $5.82967$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 13.8i·5-s + 3.46·7-s − 48i·11-s − 20.7i·13-s − 96·17-s − 40i·19-s − 110.·23-s − 66.9·25-s + 13.8i·29-s + 204.·31-s + 47.9i·35-s − 297. i·37-s + 288·41-s − 152i·43-s + 554.·47-s + ⋯
L(s)  = 1  + 1.23i·5-s + 0.187·7-s − 1.31i·11-s − 0.443i·13-s − 1.36·17-s − 0.482i·19-s − 1.00·23-s − 0.535·25-s + 0.0887i·29-s + 1.18·31-s + 0.231i·35-s − 1.32i·37-s + 1.09·41-s − 0.539i·43-s + 1.72·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 + 0.965i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $0.258 + 0.965i$
Analytic conductor: \(33.9851\)
Root analytic conductor: \(5.82967\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :3/2),\ 0.258 + 0.965i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.263682639\)
\(L(\frac12)\) \(\approx\) \(1.263682639\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 13.8iT - 125T^{2} \)
7 \( 1 - 3.46T + 343T^{2} \)
11 \( 1 + 48iT - 1.33e3T^{2} \)
13 \( 1 + 20.7iT - 2.19e3T^{2} \)
17 \( 1 + 96T + 4.91e3T^{2} \)
19 \( 1 + 40iT - 6.85e3T^{2} \)
23 \( 1 + 110.T + 1.21e4T^{2} \)
29 \( 1 - 13.8iT - 2.43e4T^{2} \)
31 \( 1 - 204.T + 2.97e4T^{2} \)
37 \( 1 + 297. iT - 5.06e4T^{2} \)
41 \( 1 - 288T + 6.89e4T^{2} \)
43 \( 1 + 152iT - 7.95e4T^{2} \)
47 \( 1 - 554.T + 1.03e5T^{2} \)
53 \( 1 + 180. iT - 1.48e5T^{2} \)
59 \( 1 - 480iT - 2.05e5T^{2} \)
61 \( 1 + 755. iT - 2.26e5T^{2} \)
67 \( 1 + 848iT - 3.00e5T^{2} \)
71 \( 1 + 886.T + 3.57e5T^{2} \)
73 \( 1 + 538T + 3.89e5T^{2} \)
79 \( 1 - 1.00e3T + 4.93e5T^{2} \)
83 \( 1 + 432iT - 5.71e5T^{2} \)
89 \( 1 + 1.34e3T + 7.04e5T^{2} \)
97 \( 1 + 590T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.43285320840816177443204840015, −9.221655842316071477545785898266, −8.351160493966307508768928416231, −7.40107591493420919535028986484, −6.45688701946566511894266438976, −5.76969852119645143867107601574, −4.33429475238747031501053304008, −3.20450728824967372718284750350, −2.29572692098964820748320495240, −0.38825598537951438965242996898, 1.26034651133895404860356668779, 2.35807579429580258950831657477, 4.33797200267635410905716941495, 4.57288351966548682677435643443, 5.87630813846473721930957690686, 6.93297668198878902858378799583, 7.983363675675960617107866944439, 8.765054864115026961828501000179, 9.554826105863832336754782544830, 10.33975862892823934405088782214

Graph of the $Z$-function along the critical line