Properties

Label 2-24e2-576.205-c1-0-65
Degree $2$
Conductor $576$
Sign $-0.920 + 0.391i$
Analytic cond. $4.59938$
Root an. cond. $2.14461$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.775 − 1.18i)2-s + (0.720 + 1.57i)3-s + (−0.797 + 1.83i)4-s + (−0.992 − 1.13i)5-s + (1.30 − 2.07i)6-s + (−1.51 − 0.199i)7-s + (2.78 − 0.478i)8-s + (−1.96 + 2.27i)9-s + (−0.569 + 2.05i)10-s + (−1.85 − 3.75i)11-s + (−3.46 + 0.0662i)12-s + (0.737 + 2.17i)13-s + (0.940 + 1.94i)14-s + (1.06 − 2.37i)15-s + (−2.72 − 2.92i)16-s + (−4.20 − 4.20i)17-s + ⋯
L(s)  = 1  + (−0.548 − 0.836i)2-s + (0.416 + 0.909i)3-s + (−0.398 + 0.917i)4-s + (−0.443 − 0.506i)5-s + (0.532 − 0.846i)6-s + (−0.573 − 0.0754i)7-s + (0.985 − 0.169i)8-s + (−0.653 + 0.756i)9-s + (−0.179 + 0.648i)10-s + (−0.558 − 1.13i)11-s + (−0.999 + 0.0191i)12-s + (0.204 + 0.602i)13-s + (0.251 + 0.520i)14-s + (0.275 − 0.614i)15-s + (−0.681 − 0.731i)16-s + (−1.01 − 1.01i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.920 + 0.391i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.920 + 0.391i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-0.920 + 0.391i$
Analytic conductor: \(4.59938\)
Root analytic conductor: \(2.14461\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (205, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :1/2),\ -0.920 + 0.391i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0719180 - 0.352482i\)
\(L(\frac12)\) \(\approx\) \(0.0719180 - 0.352482i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.775 + 1.18i)T \)
3 \( 1 + (-0.720 - 1.57i)T \)
good5 \( 1 + (0.992 + 1.13i)T + (-0.652 + 4.95i)T^{2} \)
7 \( 1 + (1.51 + 0.199i)T + (6.76 + 1.81i)T^{2} \)
11 \( 1 + (1.85 + 3.75i)T + (-6.69 + 8.72i)T^{2} \)
13 \( 1 + (-0.737 - 2.17i)T + (-10.3 + 7.91i)T^{2} \)
17 \( 1 + (4.20 + 4.20i)T + 17iT^{2} \)
19 \( 1 + (-0.0676 + 0.340i)T + (-17.5 - 7.27i)T^{2} \)
23 \( 1 + (-0.115 - 0.876i)T + (-22.2 + 5.95i)T^{2} \)
29 \( 1 + (-1.53 + 0.100i)T + (28.7 - 3.78i)T^{2} \)
31 \( 1 + (3.11 - 1.79i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (1.96 + 9.90i)T + (-34.1 + 14.1i)T^{2} \)
41 \( 1 + (1.45 + 11.0i)T + (-39.6 + 10.6i)T^{2} \)
43 \( 1 + (6.89 - 3.40i)T + (26.1 - 34.1i)T^{2} \)
47 \( 1 + (-5.41 + 1.45i)T + (40.7 - 23.5i)T^{2} \)
53 \( 1 + (1.12 - 1.67i)T + (-20.2 - 48.9i)T^{2} \)
59 \( 1 + (2.94 + 3.35i)T + (-7.70 + 58.4i)T^{2} \)
61 \( 1 + (-0.340 - 5.19i)T + (-60.4 + 7.96i)T^{2} \)
67 \( 1 + (8.96 + 4.42i)T + (40.7 + 53.1i)T^{2} \)
71 \( 1 + (-5.31 - 12.8i)T + (-50.2 + 50.2i)T^{2} \)
73 \( 1 + (2.93 - 7.08i)T + (-51.6 - 51.6i)T^{2} \)
79 \( 1 + (-3.55 - 13.2i)T + (-68.4 + 39.5i)T^{2} \)
83 \( 1 + (-1.19 - 1.04i)T + (10.8 + 82.2i)T^{2} \)
89 \( 1 + (-2.83 + 1.17i)T + (62.9 - 62.9i)T^{2} \)
97 \( 1 + (-11.6 - 6.72i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.40590258324541115024438056676, −9.330602367735037912767338370487, −8.867019542734857986881689593888, −8.158374908179452677541394677735, −7.00222176205414475329337395163, −5.37082246813143369613278130769, −4.30907430776334652429891515097, −3.47630113545144642723574521148, −2.43225953923241086407234280133, −0.22206521563127396364694886677, 1.79136238063192540568198619013, 3.23772377034886090549191889531, 4.74753888689237675283166235191, 6.14006952312216845311078561855, 6.72475711912108859974211816947, 7.58353455635506419940446025388, 8.201982505307263564710779242417, 9.132541716937979231895130394538, 10.08284079249278859432597533068, 10.88390417246618418139104044546

Graph of the $Z$-function along the critical line