Properties

Label 2-24e2-3.2-c6-0-39
Degree $2$
Conductor $576$
Sign $-0.577 + 0.816i$
Analytic cond. $132.511$
Root an. cond. $11.5113$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 173. i·5-s + 484·7-s + 1.34e3i·11-s − 3.36e3·13-s + 12.7i·17-s + 5.74e3·19-s + 3.37e3i·23-s − 1.46e4·25-s − 2.93e4i·29-s + 3.97e4·31-s − 8.41e4i·35-s − 5.25e4·37-s − 3.70e4i·41-s + 3.80e3·43-s − 7.67e4i·47-s + ⋯
L(s)  = 1  − 1.39i·5-s + 1.41·7-s + 1.00i·11-s − 1.53·13-s + 0.00259i·17-s + 0.837·19-s + 0.277i·23-s − 0.936·25-s − 1.20i·29-s + 1.33·31-s − 1.96i·35-s − 1.03·37-s − 0.537i·41-s + 0.0477·43-s − 0.739i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-0.577 + 0.816i$
Analytic conductor: \(132.511\)
Root analytic conductor: \(11.5113\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :3),\ -0.577 + 0.816i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.888005982\)
\(L(\frac12)\) \(\approx\) \(1.888005982\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 173. iT - 1.56e4T^{2} \)
7 \( 1 - 484T + 1.17e5T^{2} \)
11 \( 1 - 1.34e3iT - 1.77e6T^{2} \)
13 \( 1 + 3.36e3T + 4.82e6T^{2} \)
17 \( 1 - 12.7iT - 2.41e7T^{2} \)
19 \( 1 - 5.74e3T + 4.70e7T^{2} \)
23 \( 1 - 3.37e3iT - 1.48e8T^{2} \)
29 \( 1 + 2.93e4iT - 5.94e8T^{2} \)
31 \( 1 - 3.97e4T + 8.87e8T^{2} \)
37 \( 1 + 5.25e4T + 2.56e9T^{2} \)
41 \( 1 + 3.70e4iT - 4.75e9T^{2} \)
43 \( 1 - 3.80e3T + 6.32e9T^{2} \)
47 \( 1 + 7.67e4iT - 1.07e10T^{2} \)
53 \( 1 + 2.38e5iT - 2.21e10T^{2} \)
59 \( 1 + 2.49e5iT - 4.21e10T^{2} \)
61 \( 1 + 1.32e4T + 5.15e10T^{2} \)
67 \( 1 - 1.68e5T + 9.04e10T^{2} \)
71 \( 1 - 5.31e5iT - 1.28e11T^{2} \)
73 \( 1 - 2.36e5T + 1.51e11T^{2} \)
79 \( 1 - 3.51e4T + 2.43e11T^{2} \)
83 \( 1 + 1.09e4iT - 3.26e11T^{2} \)
89 \( 1 + 1.29e5iT - 4.96e11T^{2} \)
97 \( 1 + 3.21e5T + 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.543951896866464836713259394027, −8.435574006494326632353156161892, −7.86546637511547730109050287042, −6.97745736850846790714074030286, −5.24583512857765705917418361888, −5.00064836253169559777266452057, −4.14766820006059447331224570061, −2.31743698091971696467434712122, −1.48884625047421493810732870659, −0.38529768320131408649471333716, 1.16467125975890339456892349164, 2.46850392260194968053101770445, 3.19666628802339647221024496809, 4.59737755004628403176798868479, 5.45123449337657301546702552530, 6.61276169954335565554319859192, 7.44934367639735212854745379499, 8.098031324176693798511009557961, 9.213317446180268905437375063074, 10.35022171726521897036781096684

Graph of the $Z$-function along the critical line