L(s) = 1 | + 1.41i·5-s − 4i·7-s + 5.65·11-s − 4·13-s − 4.24i·17-s + 5.65·23-s + 2.99·25-s − 1.41i·29-s − 4i·31-s + 5.65·35-s + 6·37-s + 9.89i·41-s − 8i·43-s + 5.65·47-s − 9·49-s + ⋯ |
L(s) = 1 | + 0.632i·5-s − 1.51i·7-s + 1.70·11-s − 1.10·13-s − 1.02i·17-s + 1.17·23-s + 0.599·25-s − 0.262i·29-s − 0.718i·31-s + 0.956·35-s + 0.986·37-s + 1.54i·41-s − 1.21i·43-s + 0.825·47-s − 1.28·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 + 0.577i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.44379 - 0.458892i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.44379 - 0.458892i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 1.41iT - 5T^{2} \) |
| 7 | \( 1 + 4iT - 7T^{2} \) |
| 11 | \( 1 - 5.65T + 11T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 17 | \( 1 + 4.24iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 - 5.65T + 23T^{2} \) |
| 29 | \( 1 + 1.41iT - 29T^{2} \) |
| 31 | \( 1 + 4iT - 31T^{2} \) |
| 37 | \( 1 - 6T + 37T^{2} \) |
| 41 | \( 1 - 9.89iT - 41T^{2} \) |
| 43 | \( 1 + 8iT - 43T^{2} \) |
| 47 | \( 1 - 5.65T + 47T^{2} \) |
| 53 | \( 1 - 4.24iT - 53T^{2} \) |
| 59 | \( 1 + 11.3T + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + 8iT - 67T^{2} \) |
| 71 | \( 1 + 5.65T + 71T^{2} \) |
| 73 | \( 1 + 73T^{2} \) |
| 79 | \( 1 - 4iT - 79T^{2} \) |
| 83 | \( 1 + 5.65T + 83T^{2} \) |
| 89 | \( 1 - 4.24iT - 89T^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69619063980368636171375991177, −9.733462023742142104423597225146, −9.147631667986383707719935815804, −7.64006565909740857192430892332, −7.07012598023383490879371606100, −6.41109217734208565932017327079, −4.81626122090875509237041380955, −3.98491503100421461092184165467, −2.82630491320167199391182977328, −1.00139004576048210737172999504,
1.51386925148197022456047979947, 2.87620669905022926389970862274, 4.30200732071547033856468519348, 5.27264475672384624893226264143, 6.18668713965497884219095361266, 7.15114571207234710370819670074, 8.521256754362502619770605852771, 8.988662126596628266130241397373, 9.636746367279832582119890311446, 10.92295975230878776874046135427