Properties

Label 2-24e2-1.1-c7-0-63
Degree $2$
Conductor $576$
Sign $-1$
Analytic cond. $179.933$
Root an. cond. $13.4139$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 390·5-s − 64·7-s − 948·11-s + 5.09e3·13-s − 2.83e4·17-s + 8.62e3·19-s + 1.52e4·23-s + 7.39e4·25-s + 3.65e4·29-s − 2.76e5·31-s − 2.49e4·35-s − 2.68e5·37-s + 6.29e5·41-s − 6.85e5·43-s − 5.83e5·47-s − 8.19e5·49-s − 4.28e5·53-s − 3.69e5·55-s + 1.30e6·59-s − 3.00e5·61-s + 1.98e6·65-s + 5.07e5·67-s − 5.56e6·71-s + 1.36e6·73-s + 6.06e4·77-s − 6.91e6·79-s − 4.37e6·83-s + ⋯
L(s)  = 1  + 1.39·5-s − 0.0705·7-s − 0.214·11-s + 0.643·13-s − 1.40·17-s + 0.288·19-s + 0.262·23-s + 0.946·25-s + 0.277·29-s − 1.66·31-s − 0.0984·35-s − 0.871·37-s + 1.42·41-s − 1.31·43-s − 0.819·47-s − 0.995·49-s − 0.394·53-s − 0.299·55-s + 0.828·59-s − 0.169·61-s + 0.897·65-s + 0.206·67-s − 1.84·71-s + 0.411·73-s + 0.0151·77-s − 1.57·79-s − 0.840·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(179.933\)
Root analytic conductor: \(13.4139\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 576,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 78 p T + p^{7} T^{2} \)
7 \( 1 + 64 T + p^{7} T^{2} \)
11 \( 1 + 948 T + p^{7} T^{2} \)
13 \( 1 - 5098 T + p^{7} T^{2} \)
17 \( 1 + 28386 T + p^{7} T^{2} \)
19 \( 1 - 8620 T + p^{7} T^{2} \)
23 \( 1 - 15288 T + p^{7} T^{2} \)
29 \( 1 - 36510 T + p^{7} T^{2} \)
31 \( 1 + 276808 T + p^{7} T^{2} \)
37 \( 1 + 268526 T + p^{7} T^{2} \)
41 \( 1 - 629718 T + p^{7} T^{2} \)
43 \( 1 + 685772 T + p^{7} T^{2} \)
47 \( 1 + 583296 T + p^{7} T^{2} \)
53 \( 1 + 428058 T + p^{7} T^{2} \)
59 \( 1 - 1306380 T + p^{7} T^{2} \)
61 \( 1 + 300662 T + p^{7} T^{2} \)
67 \( 1 - 507244 T + p^{7} T^{2} \)
71 \( 1 + 5560632 T + p^{7} T^{2} \)
73 \( 1 - 1369082 T + p^{7} T^{2} \)
79 \( 1 + 6913720 T + p^{7} T^{2} \)
83 \( 1 + 4376748 T + p^{7} T^{2} \)
89 \( 1 - 8528310 T + p^{7} T^{2} \)
97 \( 1 + 8826814 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.182495283400453477903547855134, −8.526104784341787363418157910638, −7.20084722551781859289740125967, −6.35035704812213086393482506475, −5.60427276186170969758732717939, −4.65537761562874673343871093916, −3.33604179474300681981360068404, −2.19646427974931807220233195393, −1.44179415403615408543977204356, 0, 1.44179415403615408543977204356, 2.19646427974931807220233195393, 3.33604179474300681981360068404, 4.65537761562874673343871093916, 5.60427276186170969758732717939, 6.35035704812213086393482506475, 7.20084722551781859289740125967, 8.526104784341787363418157910638, 9.182495283400453477903547855134

Graph of the $Z$-function along the critical line