| L(s) = 1 | + (0.471 + 0.881i)2-s + (−0.831 + 0.555i)3-s + (−0.555 + 0.831i)4-s + (1.72 − 0.344i)5-s + (−0.881 − 0.471i)6-s + (−0.995 − 0.0980i)8-s + (0.382 − 0.923i)9-s + (1.11 + 1.36i)10-s + (0.108 − 0.162i)11-s − i·12-s + (0.980 + 0.195i)13-s + (−1.24 + 1.24i)15-s + (−0.382 − 0.923i)16-s + (0.995 − 0.0980i)18-s + (−0.674 + 1.62i)20-s + ⋯ |
| L(s) = 1 | + (0.471 + 0.881i)2-s + (−0.831 + 0.555i)3-s + (−0.555 + 0.831i)4-s + (1.72 − 0.344i)5-s + (−0.881 − 0.471i)6-s + (−0.995 − 0.0980i)8-s + (0.382 − 0.923i)9-s + (1.11 + 1.36i)10-s + (0.108 − 0.162i)11-s − i·12-s + (0.980 + 0.195i)13-s + (−1.24 + 1.24i)15-s + (−0.382 − 0.923i)16-s + (0.995 − 0.0980i)18-s + (−0.674 + 1.62i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0980 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0980 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.547305270\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.547305270\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.471 - 0.881i)T \) |
| 3 | \( 1 + (0.831 - 0.555i)T \) |
| 13 | \( 1 + (-0.980 - 0.195i)T \) |
| good | 5 | \( 1 + (-1.72 + 0.344i)T + (0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.108 + 0.162i)T + (-0.382 - 0.923i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 41 | \( 1 + (0.536 + 0.222i)T + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (-0.324 - 0.216i)T + (0.382 + 0.923i)T^{2} \) |
| 47 | \( 1 + (-1.09 - 1.09i)T + iT^{2} \) |
| 53 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 59 | \( 1 + (-0.924 + 0.183i)T + (0.923 - 0.382i)T^{2} \) |
| 61 | \( 1 + (1.53 - 1.02i)T + (0.382 - 0.923i)T^{2} \) |
| 67 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 71 | \( 1 + (0.761 + 1.83i)T + (-0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (0.275 - 0.275i)T - iT^{2} \) |
| 83 | \( 1 + (-0.373 + 1.87i)T + (-0.923 - 0.382i)T^{2} \) |
| 89 | \( 1 + (1.42 - 0.591i)T + (0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.062849145638599117725330362174, −8.900733685409590966677695966525, −7.60326236371313588748955018572, −6.48901966358496575303054504342, −6.16013100950390532137803455694, −5.55719723294269568743018530440, −4.84507443195513544950270755770, −4.02844377035195383757159013866, −2.89213453224929774557692909384, −1.36429054953051222987018539427,
1.23362192996778993743603185648, 1.96749946760444740384875518162, 2.86095919948934384237440620300, 4.10878515354447484588404290415, 5.27498252984627227466563501656, 5.61952616192129261773576418275, 6.38872544125047130399812491019, 6.92140778423704806463798235863, 8.324487939480619494299040721986, 9.173846759933664594895326302370