Properties

Label 2-2496-1.1-c3-0-81
Degree $2$
Conductor $2496$
Sign $1$
Analytic cond. $147.268$
Root an. cond. $12.1354$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 11.4·5-s + 11.2·7-s + 9·9-s + 25.8·11-s − 13·13-s + 34.2·15-s − 20.3·17-s + 154.·19-s + 33.7·21-s + 180.·23-s + 5.69·25-s + 27·27-s + 20.4·29-s − 266.·31-s + 77.6·33-s + 128.·35-s − 115.·37-s − 39·39-s + 391.·41-s + 151.·43-s + 102.·45-s + 467.·47-s − 216.·49-s − 60.9·51-s − 79.9·53-s + 295.·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.02·5-s + 0.607·7-s + 0.333·9-s + 0.709·11-s − 0.277·13-s + 0.590·15-s − 0.290·17-s + 1.86·19-s + 0.350·21-s + 1.63·23-s + 0.0455·25-s + 0.192·27-s + 0.130·29-s − 1.54·31-s + 0.409·33-s + 0.621·35-s − 0.515·37-s − 0.160·39-s + 1.49·41-s + 0.536·43-s + 0.340·45-s + 1.45·47-s − 0.630·49-s − 0.167·51-s − 0.207·53-s + 0.725·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(147.268\)
Root analytic conductor: \(12.1354\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.639600839\)
\(L(\frac12)\) \(\approx\) \(4.639600839\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
13 \( 1 + 13T \)
good5 \( 1 - 11.4T + 125T^{2} \)
7 \( 1 - 11.2T + 343T^{2} \)
11 \( 1 - 25.8T + 1.33e3T^{2} \)
17 \( 1 + 20.3T + 4.91e3T^{2} \)
19 \( 1 - 154.T + 6.85e3T^{2} \)
23 \( 1 - 180.T + 1.21e4T^{2} \)
29 \( 1 - 20.4T + 2.43e4T^{2} \)
31 \( 1 + 266.T + 2.97e4T^{2} \)
37 \( 1 + 115.T + 5.06e4T^{2} \)
41 \( 1 - 391.T + 6.89e4T^{2} \)
43 \( 1 - 151.T + 7.95e4T^{2} \)
47 \( 1 - 467.T + 1.03e5T^{2} \)
53 \( 1 + 79.9T + 1.48e5T^{2} \)
59 \( 1 + 873.T + 2.05e5T^{2} \)
61 \( 1 - 187.T + 2.26e5T^{2} \)
67 \( 1 + 609.T + 3.00e5T^{2} \)
71 \( 1 + 248.T + 3.57e5T^{2} \)
73 \( 1 - 852.T + 3.89e5T^{2} \)
79 \( 1 - 331.T + 4.93e5T^{2} \)
83 \( 1 + 435.T + 5.71e5T^{2} \)
89 \( 1 - 259.T + 7.04e5T^{2} \)
97 \( 1 - 1.22e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.928801382316524640591042804738, −7.59420983018327530720123366028, −7.29711911009943972386174297877, −6.20716719136986701666707093458, −5.40921095693756550761939167579, −4.71538932789604488522874336505, −3.60379449808299288755236797723, −2.72171525885113310138879275239, −1.75476383729905286427139137374, −1.00196879915714256045522685230, 1.00196879915714256045522685230, 1.75476383729905286427139137374, 2.72171525885113310138879275239, 3.60379449808299288755236797723, 4.71538932789604488522874336505, 5.40921095693756550761939167579, 6.20716719136986701666707093458, 7.29711911009943972386174297877, 7.59420983018327530720123366028, 8.928801382316524640591042804738

Graph of the $Z$-function along the critical line