L(s) = 1 | + 3·3-s + 11.4·5-s + 11.2·7-s + 9·9-s + 25.8·11-s − 13·13-s + 34.2·15-s − 20.3·17-s + 154.·19-s + 33.7·21-s + 180.·23-s + 5.69·25-s + 27·27-s + 20.4·29-s − 266.·31-s + 77.6·33-s + 128.·35-s − 115.·37-s − 39·39-s + 391.·41-s + 151.·43-s + 102.·45-s + 467.·47-s − 216.·49-s − 60.9·51-s − 79.9·53-s + 295.·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.02·5-s + 0.607·7-s + 0.333·9-s + 0.709·11-s − 0.277·13-s + 0.590·15-s − 0.290·17-s + 1.86·19-s + 0.350·21-s + 1.63·23-s + 0.0455·25-s + 0.192·27-s + 0.130·29-s − 1.54·31-s + 0.409·33-s + 0.621·35-s − 0.515·37-s − 0.160·39-s + 1.49·41-s + 0.536·43-s + 0.340·45-s + 1.45·47-s − 0.630·49-s − 0.167·51-s − 0.207·53-s + 0.725·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(4.639600839\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.639600839\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3T \) |
| 13 | \( 1 + 13T \) |
good | 5 | \( 1 - 11.4T + 125T^{2} \) |
| 7 | \( 1 - 11.2T + 343T^{2} \) |
| 11 | \( 1 - 25.8T + 1.33e3T^{2} \) |
| 17 | \( 1 + 20.3T + 4.91e3T^{2} \) |
| 19 | \( 1 - 154.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 180.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 20.4T + 2.43e4T^{2} \) |
| 31 | \( 1 + 266.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 115.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 391.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 151.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 467.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 79.9T + 1.48e5T^{2} \) |
| 59 | \( 1 + 873.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 187.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 609.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 248.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 852.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 331.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 435.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 259.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.22e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.928801382316524640591042804738, −7.59420983018327530720123366028, −7.29711911009943972386174297877, −6.20716719136986701666707093458, −5.40921095693756550761939167579, −4.71538932789604488522874336505, −3.60379449808299288755236797723, −2.72171525885113310138879275239, −1.75476383729905286427139137374, −1.00196879915714256045522685230,
1.00196879915714256045522685230, 1.75476383729905286427139137374, 2.72171525885113310138879275239, 3.60379449808299288755236797723, 4.71538932789604488522874336505, 5.40921095693756550761939167579, 6.20716719136986701666707093458, 7.29711911009943972386174297877, 7.59420983018327530720123366028, 8.928801382316524640591042804738