Properties

Label 2-2496-1.1-c3-0-75
Degree $2$
Conductor $2496$
Sign $1$
Analytic cond. $147.268$
Root an. cond. $12.1354$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5.46·5-s + 12.3·7-s + 9·9-s + 6.78·11-s + 13·13-s + 16.3·15-s + 72.0·17-s + 99.2·19-s + 37.1·21-s + 120.·23-s − 95.1·25-s + 27·27-s + 185.·29-s − 85.4·31-s + 20.3·33-s + 67.7·35-s + 340.·37-s + 39·39-s − 427.·41-s − 64.9·43-s + 49.1·45-s − 39.2·47-s − 189.·49-s + 216.·51-s + 21.4·53-s + 37.0·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.488·5-s + 0.669·7-s + 0.333·9-s + 0.185·11-s + 0.277·13-s + 0.282·15-s + 1.02·17-s + 1.19·19-s + 0.386·21-s + 1.09·23-s − 0.761·25-s + 0.192·27-s + 1.18·29-s − 0.495·31-s + 0.107·33-s + 0.327·35-s + 1.51·37-s + 0.160·39-s − 1.62·41-s − 0.230·43-s + 0.162·45-s − 0.121·47-s − 0.552·49-s + 0.593·51-s + 0.0555·53-s + 0.0908·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(147.268\)
Root analytic conductor: \(12.1354\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.263079492\)
\(L(\frac12)\) \(\approx\) \(4.263079492\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
13 \( 1 - 13T \)
good5 \( 1 - 5.46T + 125T^{2} \)
7 \( 1 - 12.3T + 343T^{2} \)
11 \( 1 - 6.78T + 1.33e3T^{2} \)
17 \( 1 - 72.0T + 4.91e3T^{2} \)
19 \( 1 - 99.2T + 6.85e3T^{2} \)
23 \( 1 - 120.T + 1.21e4T^{2} \)
29 \( 1 - 185.T + 2.43e4T^{2} \)
31 \( 1 + 85.4T + 2.97e4T^{2} \)
37 \( 1 - 340.T + 5.06e4T^{2} \)
41 \( 1 + 427.T + 6.89e4T^{2} \)
43 \( 1 + 64.9T + 7.95e4T^{2} \)
47 \( 1 + 39.2T + 1.03e5T^{2} \)
53 \( 1 - 21.4T + 1.48e5T^{2} \)
59 \( 1 + 62.4T + 2.05e5T^{2} \)
61 \( 1 - 423.T + 2.26e5T^{2} \)
67 \( 1 + 451.T + 3.00e5T^{2} \)
71 \( 1 - 335.T + 3.57e5T^{2} \)
73 \( 1 + 1.01e3T + 3.89e5T^{2} \)
79 \( 1 + 398.T + 4.93e5T^{2} \)
83 \( 1 - 865.T + 5.71e5T^{2} \)
89 \( 1 - 641.T + 7.04e5T^{2} \)
97 \( 1 - 1.38e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.524309274624230805264607036282, −7.87055012993826525933335667806, −7.19935052174956647959674031199, −6.24702410995259432070700037514, −5.36904763434846416417056272185, −4.69369724380335325325428054021, −3.56428371107539416660000196496, −2.84749136830631466327021319422, −1.69715724988185866733820144001, −0.964627573594920973964316656421, 0.964627573594920973964316656421, 1.69715724988185866733820144001, 2.84749136830631466327021319422, 3.56428371107539416660000196496, 4.69369724380335325325428054021, 5.36904763434846416417056272185, 6.24702410995259432070700037514, 7.19935052174956647959674031199, 7.87055012993826525933335667806, 8.524309274624230805264607036282

Graph of the $Z$-function along the critical line