L(s) = 1 | + 3·3-s + 7.63·5-s + 5.63·7-s + 9·9-s − 34.5·11-s − 13·13-s + 22.8·15-s + 2·17-s + 88.1·19-s + 16.8·21-s − 64·23-s − 66.7·25-s + 27·27-s − 23.7·29-s − 284.·31-s − 103.·33-s + 42.9·35-s − 115.·37-s − 39·39-s + 1.41·41-s + 337.·43-s + 68.6·45-s − 198.·47-s − 311.·49-s + 6·51-s − 59.0·53-s − 263.·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.682·5-s + 0.303·7-s + 0.333·9-s − 0.946·11-s − 0.277·13-s + 0.394·15-s + 0.0285·17-s + 1.06·19-s + 0.175·21-s − 0.580·23-s − 0.534·25-s + 0.192·27-s − 0.152·29-s − 1.64·31-s − 0.546·33-s + 0.207·35-s − 0.512·37-s − 0.160·39-s + 0.00537·41-s + 1.19·43-s + 0.227·45-s − 0.615·47-s − 0.907·49-s + 0.0164·51-s − 0.153·53-s − 0.645·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3T \) |
| 13 | \( 1 + 13T \) |
good | 5 | \( 1 - 7.63T + 125T^{2} \) |
| 7 | \( 1 - 5.63T + 343T^{2} \) |
| 11 | \( 1 + 34.5T + 1.33e3T^{2} \) |
| 17 | \( 1 - 2T + 4.91e3T^{2} \) |
| 19 | \( 1 - 88.1T + 6.85e3T^{2} \) |
| 23 | \( 1 + 64T + 1.21e4T^{2} \) |
| 29 | \( 1 + 23.7T + 2.43e4T^{2} \) |
| 31 | \( 1 + 284.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 115.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 1.41T + 6.89e4T^{2} \) |
| 43 | \( 1 - 337.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 198.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 59.0T + 1.48e5T^{2} \) |
| 59 | \( 1 - 188.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 336.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 531.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 510.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 164.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 29.3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 117.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 508.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.02e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.015477672970482303670989439905, −7.65297196239295879219717400119, −6.75033180918405066368917242480, −5.64047112512998964043447999523, −5.22388813953890825643913289344, −4.10994378848860783003291260456, −3.14572912476690580172044778577, −2.26462285786915916032528024540, −1.47804494756137105180180355013, 0,
1.47804494756137105180180355013, 2.26462285786915916032528024540, 3.14572912476690580172044778577, 4.10994378848860783003291260456, 5.22388813953890825643913289344, 5.64047112512998964043447999523, 6.75033180918405066368917242480, 7.65297196239295879219717400119, 8.015477672970482303670989439905