Properties

Label 2-2496-1.1-c3-0-128
Degree $2$
Conductor $2496$
Sign $-1$
Analytic cond. $147.268$
Root an. cond. $12.1354$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 1.26·5-s + 28.5·7-s + 9·9-s + 26.2·11-s + 13·13-s − 3.79·15-s − 37.8·17-s + 119.·19-s − 85.6·21-s − 40.5·23-s − 123.·25-s − 27·27-s − 147.·29-s − 328.·31-s − 78.6·33-s + 36.1·35-s − 32.1·37-s − 39·39-s − 456.·41-s − 109.·43-s + 11.3·45-s − 347.·47-s + 471.·49-s + 113.·51-s + 356.·53-s + 33.1·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.113·5-s + 1.54·7-s + 0.333·9-s + 0.718·11-s + 0.277·13-s − 0.0653·15-s − 0.540·17-s + 1.44·19-s − 0.889·21-s − 0.367·23-s − 0.987·25-s − 0.192·27-s − 0.942·29-s − 1.90·31-s − 0.415·33-s + 0.174·35-s − 0.142·37-s − 0.160·39-s − 1.73·41-s − 0.388·43-s + 0.0377·45-s − 1.07·47-s + 1.37·49-s + 0.311·51-s + 0.924·53-s + 0.0813·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(147.268\)
Root analytic conductor: \(12.1354\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2496,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
13 \( 1 - 13T \)
good5 \( 1 - 1.26T + 125T^{2} \)
7 \( 1 - 28.5T + 343T^{2} \)
11 \( 1 - 26.2T + 1.33e3T^{2} \)
17 \( 1 + 37.8T + 4.91e3T^{2} \)
19 \( 1 - 119.T + 6.85e3T^{2} \)
23 \( 1 + 40.5T + 1.21e4T^{2} \)
29 \( 1 + 147.T + 2.43e4T^{2} \)
31 \( 1 + 328.T + 2.97e4T^{2} \)
37 \( 1 + 32.1T + 5.06e4T^{2} \)
41 \( 1 + 456.T + 6.89e4T^{2} \)
43 \( 1 + 109.T + 7.95e4T^{2} \)
47 \( 1 + 347.T + 1.03e5T^{2} \)
53 \( 1 - 356.T + 1.48e5T^{2} \)
59 \( 1 + 193.T + 2.05e5T^{2} \)
61 \( 1 + 473.T + 2.26e5T^{2} \)
67 \( 1 + 377.T + 3.00e5T^{2} \)
71 \( 1 + 674.T + 3.57e5T^{2} \)
73 \( 1 - 260.T + 3.89e5T^{2} \)
79 \( 1 - 1.13e3T + 4.93e5T^{2} \)
83 \( 1 + 279.T + 5.71e5T^{2} \)
89 \( 1 + 195.T + 7.04e5T^{2} \)
97 \( 1 + 183.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.077124620166812307129675997127, −7.46531720596180342926648066251, −6.68177473618471898324273487116, −5.62271379638761431471124268346, −5.20395736420620344591633071549, −4.26236364008592961542941841081, −3.46403079405926744598967454394, −1.85063045205687387096191855646, −1.43617772089389835892523401769, 0, 1.43617772089389835892523401769, 1.85063045205687387096191855646, 3.46403079405926744598967454394, 4.26236364008592961542941841081, 5.20395736420620344591633071549, 5.62271379638761431471124268346, 6.68177473618471898324273487116, 7.46531720596180342926648066251, 8.077124620166812307129675997127

Graph of the $Z$-function along the critical line