Properties

Label 2-2480-1.1-c1-0-23
Degree $2$
Conductor $2480$
Sign $1$
Analytic cond. $19.8028$
Root an. cond. $4.45004$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 4·7-s + 9-s − 4·13-s − 2·15-s + 4·19-s + 8·21-s + 6·23-s + 25-s − 4·27-s + 6·29-s − 31-s − 4·35-s + 8·37-s − 8·39-s − 6·41-s + 10·43-s − 45-s + 9·49-s + 8·57-s + 12·59-s + 14·61-s + 4·63-s + 4·65-s − 8·67-s + 12·69-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 1.51·7-s + 1/3·9-s − 1.10·13-s − 0.516·15-s + 0.917·19-s + 1.74·21-s + 1.25·23-s + 1/5·25-s − 0.769·27-s + 1.11·29-s − 0.179·31-s − 0.676·35-s + 1.31·37-s − 1.28·39-s − 0.937·41-s + 1.52·43-s − 0.149·45-s + 9/7·49-s + 1.05·57-s + 1.56·59-s + 1.79·61-s + 0.503·63-s + 0.496·65-s − 0.977·67-s + 1.44·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2480\)    =    \(2^{4} \cdot 5 \cdot 31\)
Sign: $1$
Analytic conductor: \(19.8028\)
Root analytic conductor: \(4.45004\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.971416140\)
\(L(\frac12)\) \(\approx\) \(2.971416140\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
31 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.685114650857577692522545714306, −8.262819311601488417633173532624, −7.49419993945789631125840706374, −7.09673752484755959008347483369, −5.58426186900645716344751027443, −4.84808961466705210371002429320, −4.12976829200816980141283049639, −2.98974904852982533313874079824, −2.34845511211375451752066760608, −1.11411486849151132645867872202, 1.11411486849151132645867872202, 2.34845511211375451752066760608, 2.98974904852982533313874079824, 4.12976829200816980141283049639, 4.84808961466705210371002429320, 5.58426186900645716344751027443, 7.09673752484755959008347483369, 7.49419993945789631125840706374, 8.262819311601488417633173532624, 8.685114650857577692522545714306

Graph of the $Z$-function along the critical line