Properties

Label 2-2475-1.1-c3-0-219
Degree $2$
Conductor $2475$
Sign $-1$
Analytic cond. $146.029$
Root an. cond. $12.0842$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.76·2-s + 6.16·4-s + 23.6·7-s − 6.92·8-s − 11·11-s − 7.39·13-s + 88.9·14-s − 75.3·16-s + 8.68·17-s − 69.7·19-s − 41.3·22-s − 10.1·23-s − 27.8·26-s + 145.·28-s + 73.2·29-s − 290.·31-s − 228.·32-s + 32.6·34-s + 105.·37-s − 262.·38-s − 40.5·41-s + 77.3·43-s − 67.7·44-s − 38.2·46-s − 472.·47-s + 215.·49-s − 45.5·52-s + ⋯
L(s)  = 1  + 1.33·2-s + 0.770·4-s + 1.27·7-s − 0.305·8-s − 0.301·11-s − 0.157·13-s + 1.69·14-s − 1.17·16-s + 0.123·17-s − 0.841·19-s − 0.401·22-s − 0.0921·23-s − 0.209·26-s + 0.982·28-s + 0.469·29-s − 1.68·31-s − 1.26·32-s + 0.164·34-s + 0.469·37-s − 1.11·38-s − 0.154·41-s + 0.274·43-s − 0.232·44-s − 0.122·46-s − 1.46·47-s + 0.628·49-s − 0.121·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2475\)    =    \(3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(146.029\)
Root analytic conductor: \(12.0842\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2475,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 + 11T \)
good2 \( 1 - 3.76T + 8T^{2} \)
7 \( 1 - 23.6T + 343T^{2} \)
13 \( 1 + 7.39T + 2.19e3T^{2} \)
17 \( 1 - 8.68T + 4.91e3T^{2} \)
19 \( 1 + 69.7T + 6.85e3T^{2} \)
23 \( 1 + 10.1T + 1.21e4T^{2} \)
29 \( 1 - 73.2T + 2.43e4T^{2} \)
31 \( 1 + 290.T + 2.97e4T^{2} \)
37 \( 1 - 105.T + 5.06e4T^{2} \)
41 \( 1 + 40.5T + 6.89e4T^{2} \)
43 \( 1 - 77.3T + 7.95e4T^{2} \)
47 \( 1 + 472.T + 1.03e5T^{2} \)
53 \( 1 - 205.T + 1.48e5T^{2} \)
59 \( 1 + 330.T + 2.05e5T^{2} \)
61 \( 1 + 931.T + 2.26e5T^{2} \)
67 \( 1 - 418.T + 3.00e5T^{2} \)
71 \( 1 - 506.T + 3.57e5T^{2} \)
73 \( 1 + 612.T + 3.89e5T^{2} \)
79 \( 1 - 54.6T + 4.93e5T^{2} \)
83 \( 1 - 538.T + 5.71e5T^{2} \)
89 \( 1 + 781.T + 7.04e5T^{2} \)
97 \( 1 - 531.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.118317832921700573298589410104, −7.33304568780582597426060088346, −6.40070387776346695537497493813, −5.61497713994008519672382193005, −4.91837487161020108513765943130, −4.37735124843775149016248548822, −3.48787369225175766709524233710, −2.46813537405271466369895016293, −1.58657254811156824820093674793, 0, 1.58657254811156824820093674793, 2.46813537405271466369895016293, 3.48787369225175766709524233710, 4.37735124843775149016248548822, 4.91837487161020108513765943130, 5.61497713994008519672382193005, 6.40070387776346695537497493813, 7.33304568780582597426060088346, 8.118317832921700573298589410104

Graph of the $Z$-function along the critical line