Properties

Label 2-2475-1.1-c3-0-127
Degree $2$
Conductor $2475$
Sign $1$
Analytic cond. $146.029$
Root an. cond. $12.0842$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·2-s + 17·4-s − 3·7-s + 45·8-s + 11·11-s − 32·13-s − 15·14-s + 89·16-s + 33·17-s + 47·19-s + 55·22-s + 113·23-s − 160·26-s − 51·28-s + 54·29-s + 178·31-s + 85·32-s + 165·34-s − 19·37-s + 235·38-s − 139·41-s + 308·43-s + 187·44-s + 565·46-s + 195·47-s − 334·49-s − 544·52-s + ⋯
L(s)  = 1  + 1.76·2-s + 17/8·4-s − 0.161·7-s + 1.98·8-s + 0.301·11-s − 0.682·13-s − 0.286·14-s + 1.39·16-s + 0.470·17-s + 0.567·19-s + 0.533·22-s + 1.02·23-s − 1.20·26-s − 0.344·28-s + 0.345·29-s + 1.03·31-s + 0.469·32-s + 0.832·34-s − 0.0844·37-s + 1.00·38-s − 0.529·41-s + 1.09·43-s + 0.640·44-s + 1.81·46-s + 0.605·47-s − 0.973·49-s − 1.45·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2475\)    =    \(3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(146.029\)
Root analytic conductor: \(12.0842\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2475,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(7.739644746\)
\(L(\frac12)\) \(\approx\) \(7.739644746\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 - p T \)
good2 \( 1 - 5 T + p^{3} T^{2} \)
7 \( 1 + 3 T + p^{3} T^{2} \)
13 \( 1 + 32 T + p^{3} T^{2} \)
17 \( 1 - 33 T + p^{3} T^{2} \)
19 \( 1 - 47 T + p^{3} T^{2} \)
23 \( 1 - 113 T + p^{3} T^{2} \)
29 \( 1 - 54 T + p^{3} T^{2} \)
31 \( 1 - 178 T + p^{3} T^{2} \)
37 \( 1 + 19 T + p^{3} T^{2} \)
41 \( 1 + 139 T + p^{3} T^{2} \)
43 \( 1 - 308 T + p^{3} T^{2} \)
47 \( 1 - 195 T + p^{3} T^{2} \)
53 \( 1 - 152 T + p^{3} T^{2} \)
59 \( 1 - 625 T + p^{3} T^{2} \)
61 \( 1 - 320 T + p^{3} T^{2} \)
67 \( 1 + 200 T + p^{3} T^{2} \)
71 \( 1 - 947 T + p^{3} T^{2} \)
73 \( 1 - 448 T + p^{3} T^{2} \)
79 \( 1 + 721 T + p^{3} T^{2} \)
83 \( 1 - 142 T + p^{3} T^{2} \)
89 \( 1 + 404 T + p^{3} T^{2} \)
97 \( 1 + 79 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.421877292334333203785891029358, −7.39078927829645175274875409893, −6.85909661335438011320058480485, −6.06552445375834719015444590207, −5.26463006480057123832155644282, −4.70389074008462825490514566466, −3.79284404151435500765286743019, −3.03251736270985456306182652396, −2.26540546028668896082198846582, −0.956056701552747997786135195036, 0.956056701552747997786135195036, 2.26540546028668896082198846582, 3.03251736270985456306182652396, 3.79284404151435500765286743019, 4.70389074008462825490514566466, 5.26463006480057123832155644282, 6.06552445375834719015444590207, 6.85909661335438011320058480485, 7.39078927829645175274875409893, 8.421877292334333203785891029358

Graph of the $Z$-function along the critical line