L(s) = 1 | − 2-s − 4-s − 3·7-s + 3·8-s + 11-s + 2·13-s + 3·14-s − 16-s − 3·17-s − 19-s − 22-s − 23-s − 2·26-s + 3·28-s + 6·29-s + 4·31-s − 5·32-s + 3·34-s + 37-s + 38-s − 5·41-s + 4·43-s − 44-s + 46-s − 3·47-s + 2·49-s − 2·52-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s − 1.13·7-s + 1.06·8-s + 0.301·11-s + 0.554·13-s + 0.801·14-s − 1/4·16-s − 0.727·17-s − 0.229·19-s − 0.213·22-s − 0.208·23-s − 0.392·26-s + 0.566·28-s + 1.11·29-s + 0.718·31-s − 0.883·32-s + 0.514·34-s + 0.164·37-s + 0.162·38-s − 0.780·41-s + 0.609·43-s − 0.150·44-s + 0.147·46-s − 0.437·47-s + 2/7·49-s − 0.277·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 2 | \( 1 + T + p T^{2} \) |
| 7 | \( 1 + 3 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 + T + p T^{2} \) |
| 23 | \( 1 + T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 + 5 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 3 T + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 - 11 T + p T^{2} \) |
| 61 | \( 1 - 14 T + p T^{2} \) |
| 67 | \( 1 - 2 T + p T^{2} \) |
| 71 | \( 1 + 5 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 - 5 T + p T^{2} \) |
| 83 | \( 1 + 8 T + p T^{2} \) |
| 89 | \( 1 + 10 T + p T^{2} \) |
| 97 | \( 1 + 17 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.500775704585080846252634260999, −8.155207854629156628630531146509, −6.88655912806536134012016034996, −6.51780423833610446264208059382, −5.45001030587274355240973905662, −4.42303895506447824218553717818, −3.72455677823649494894558967993, −2.62344002697790795187697994636, −1.23297886210285181777321436748, 0,
1.23297886210285181777321436748, 2.62344002697790795187697994636, 3.72455677823649494894558967993, 4.42303895506447824218553717818, 5.45001030587274355240973905662, 6.51780423833610446264208059382, 6.88655912806536134012016034996, 8.155207854629156628630531146509, 8.500775704585080846252634260999