Properties

Label 2-2475-1.1-c1-0-15
Degree $2$
Conductor $2475$
Sign $1$
Analytic cond. $19.7629$
Root an. cond. $4.44555$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.70·2-s + 5.34·4-s − 1.07·7-s − 9.04·8-s − 11-s + 4.34·13-s + 2.92·14-s + 13.8·16-s + 7.75·17-s + 5.26·19-s + 2.70·22-s − 2.15·23-s − 11.7·26-s − 5.75·28-s − 1.41·29-s − 4.68·31-s − 19.3·32-s − 21.0·34-s + 2·37-s − 14.2·38-s + 9.41·41-s − 7.60·43-s − 5.34·44-s + 5.84·46-s + 4.68·47-s − 5.83·49-s + 23.1·52-s + ⋯
L(s)  = 1  − 1.91·2-s + 2.67·4-s − 0.407·7-s − 3.19·8-s − 0.301·11-s + 1.20·13-s + 0.780·14-s + 3.45·16-s + 1.88·17-s + 1.20·19-s + 0.577·22-s − 0.449·23-s − 2.30·26-s − 1.08·28-s − 0.263·29-s − 0.840·31-s − 3.42·32-s − 3.60·34-s + 0.328·37-s − 2.31·38-s + 1.47·41-s − 1.15·43-s − 0.805·44-s + 0.861·46-s + 0.682·47-s − 0.833·49-s + 3.21·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2475\)    =    \(3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(19.7629\)
Root analytic conductor: \(4.44555\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2475} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2475,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7700792340\)
\(L(\frac12)\) \(\approx\) \(0.7700792340\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good2 \( 1 + 2.70T + 2T^{2} \)
7 \( 1 + 1.07T + 7T^{2} \)
13 \( 1 - 4.34T + 13T^{2} \)
17 \( 1 - 7.75T + 17T^{2} \)
19 \( 1 - 5.26T + 19T^{2} \)
23 \( 1 + 2.15T + 23T^{2} \)
29 \( 1 + 1.41T + 29T^{2} \)
31 \( 1 + 4.68T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 - 9.41T + 41T^{2} \)
43 \( 1 + 7.60T + 43T^{2} \)
47 \( 1 - 4.68T + 47T^{2} \)
53 \( 1 - 0.156T + 53T^{2} \)
59 \( 1 + 6.15T + 59T^{2} \)
61 \( 1 + 4.15T + 61T^{2} \)
67 \( 1 - 8.68T + 67T^{2} \)
71 \( 1 - 4.68T + 71T^{2} \)
73 \( 1 - 10.4T + 73T^{2} \)
79 \( 1 + 8.09T + 79T^{2} \)
83 \( 1 + 11.0T + 83T^{2} \)
89 \( 1 - 12.8T + 89T^{2} \)
97 \( 1 + 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.061081579155716882766913268351, −8.065425533008553259484504372142, −7.77329965653966197018633728137, −6.94768065661682225446732753205, −6.03986585962032891931000608521, −5.48876852697537827736456793678, −3.60873364680059656527923423887, −2.95132670489929551242914862052, −1.65192556245490859446944456158, −0.78022008218009118041254602973, 0.78022008218009118041254602973, 1.65192556245490859446944456158, 2.95132670489929551242914862052, 3.60873364680059656527923423887, 5.48876852697537827736456793678, 6.03986585962032891931000608521, 6.94768065661682225446732753205, 7.77329965653966197018633728137, 8.065425533008553259484504372142, 9.061081579155716882766913268351

Graph of the $Z$-function along the critical line