L(s) = 1 | − 2-s − 3·3-s + 4-s + 4·5-s + 3·6-s − 7-s − 8-s + 6·9-s − 4·10-s + 11-s − 3·12-s + 13-s + 14-s − 12·15-s + 16-s − 7·17-s − 6·18-s + 4·20-s + 3·21-s − 22-s + 23-s + 3·24-s + 11·25-s − 26-s − 9·27-s − 28-s + 9·29-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.73·3-s + 1/2·4-s + 1.78·5-s + 1.22·6-s − 0.377·7-s − 0.353·8-s + 2·9-s − 1.26·10-s + 0.301·11-s − 0.866·12-s + 0.277·13-s + 0.267·14-s − 3.09·15-s + 1/4·16-s − 1.69·17-s − 1.41·18-s + 0.894·20-s + 0.654·21-s − 0.213·22-s + 0.208·23-s + 0.612·24-s + 11/5·25-s − 0.196·26-s − 1.73·27-s − 0.188·28-s + 1.67·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 246202 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 246202 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.529769482\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.529769482\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 11 | \( 1 - T \) |
| 19 | \( 1 \) |
| 31 | \( 1 + T \) |
good | 3 | \( 1 + p T + p T^{2} \) |
| 5 | \( 1 - 4 T + p T^{2} \) |
| 7 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 - T + p T^{2} \) |
| 17 | \( 1 + 7 T + p T^{2} \) |
| 23 | \( 1 - T + p T^{2} \) |
| 29 | \( 1 - 9 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 + 10 T + p T^{2} \) |
| 43 | \( 1 - 10 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 + T + p T^{2} \) |
| 59 | \( 1 - 9 T + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 - 5 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - 7 T + p T^{2} \) |
| 79 | \( 1 - 2 T + p T^{2} \) |
| 83 | \( 1 - 8 T + p T^{2} \) |
| 89 | \( 1 - 2 T + p T^{2} \) |
| 97 | \( 1 - 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.82163360994868, −12.37527897234479, −11.80479393922350, −11.37528017088329, −10.92488846193989, −10.41885946345286, −10.24172338337153, −9.796638719242039, −9.177991502162843, −8.873923064527479, −8.398048531183328, −7.449203989979008, −6.824592018588308, −6.633387430601080, −6.244117636570694, −5.926065938102495, −5.186707637122830, −4.996526566382265, −4.320365926514733, −3.590835941138369, −2.646411749336967, −2.205231643330002, −1.632265319927128, −0.9551056052724172, −0.5133313315417666,
0.5133313315417666, 0.9551056052724172, 1.632265319927128, 2.205231643330002, 2.646411749336967, 3.590835941138369, 4.320365926514733, 4.996526566382265, 5.186707637122830, 5.926065938102495, 6.244117636570694, 6.633387430601080, 6.824592018588308, 7.449203989979008, 8.398048531183328, 8.873923064527479, 9.177991502162843, 9.796638719242039, 10.24172338337153, 10.41885946345286, 10.92488846193989, 11.37528017088329, 11.80479393922350, 12.37527897234479, 12.82163360994868