Properties

Label 2-245-7.4-c1-0-5
Degree $2$
Conductor $245$
Sign $0.991 - 0.126i$
Analytic cond. $1.95633$
Root an. cond. $1.39869$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)3-s + (1 − 1.73i)4-s + (0.5 + 0.866i)5-s + (1 + 1.73i)9-s + (1.5 − 2.59i)11-s + (0.999 + 1.73i)12-s + 5·13-s − 0.999·15-s + (−1.99 − 3.46i)16-s + (−1.5 + 2.59i)17-s + (−1 − 1.73i)19-s + 1.99·20-s + (3 + 5.19i)23-s + (−0.499 + 0.866i)25-s − 5·27-s + ⋯
L(s)  = 1  + (−0.288 + 0.499i)3-s + (0.5 − 0.866i)4-s + (0.223 + 0.387i)5-s + (0.333 + 0.577i)9-s + (0.452 − 0.783i)11-s + (0.288 + 0.499i)12-s + 1.38·13-s − 0.258·15-s + (−0.499 − 0.866i)16-s + (−0.363 + 0.630i)17-s + (−0.229 − 0.397i)19-s + 0.447·20-s + (0.625 + 1.08i)23-s + (−0.0999 + 0.173i)25-s − 0.962·27-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $0.991 - 0.126i$
Analytic conductor: \(1.95633\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{245} (116, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :1/2),\ 0.991 - 0.126i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.37771 + 0.0874302i\)
\(L(\frac12)\) \(\approx\) \(1.37771 + 0.0874302i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.5 - 0.866i)T \)
7 \( 1 \)
good2 \( 1 + (-1 + 1.73i)T^{2} \)
3 \( 1 + (0.5 - 0.866i)T + (-1.5 - 2.59i)T^{2} \)
11 \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 - 5T + 13T^{2} \)
17 \( 1 + (1.5 - 2.59i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 - 3T + 29T^{2} \)
31 \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 12T + 41T^{2} \)
43 \( 1 + 10T + 43T^{2} \)
47 \( 1 + (4.5 + 7.79i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (6 - 10.3i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + (1 - 1.73i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-0.5 - 0.866i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 12T + 83T^{2} \)
89 \( 1 + (-6 - 10.3i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.65727737368445366670696295834, −10.99732400934233756383588807829, −10.44868144079610207187074374545, −9.440478056710243554149160591124, −8.291621576686281165493424515429, −6.78827030942083609426156456071, −6.03821227235137514661533204502, −4.99431691664906587192565670923, −3.48941768776716897594935397528, −1.64946938923012272135865661838, 1.60588733443480794334045228149, 3.37297023196331269267382799009, 4.65935311714706110465415933365, 6.45160428522022824140524885980, 6.79828732350708024546049650676, 8.173870342928776447521522365671, 8.967661317560419698394995409895, 10.23014148645109283484995464902, 11.45004176964186420458997400265, 12.10194804678235806874042783220

Graph of the $Z$-function along the critical line