L(s) = 1 | + (−0.828 + 1.43i)2-s + (−0.166 − 0.288i)3-s + (2.62 + 4.55i)4-s + (−2.5 + 4.33i)5-s + 0.551·6-s − 21.9·8-s + (13.4 − 23.2i)9-s + (−4.14 − 7.17i)10-s + (−34.7 − 60.2i)11-s + (0.875 − 1.51i)12-s − 68.4·13-s + 1.66·15-s + (−2.85 + 4.93i)16-s + (52.1 + 90.3i)17-s + (22.2 + 38.5i)18-s + (35.9 − 62.2i)19-s + ⋯ |
L(s) = 1 | + (−0.292 + 0.507i)2-s + (−0.0320 − 0.0554i)3-s + (0.328 + 0.569i)4-s + (−0.223 + 0.387i)5-s + 0.0375·6-s − 0.970·8-s + (0.497 − 0.862i)9-s + (−0.130 − 0.226i)10-s + (−0.953 − 1.65i)11-s + (0.0210 − 0.0364i)12-s − 1.45·13-s + 0.0286·15-s + (−0.0445 + 0.0771i)16-s + (0.744 + 1.28i)17-s + (0.291 + 0.504i)18-s + (0.434 − 0.751i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.198 + 0.980i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.198 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.477750 - 0.390870i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.477750 - 0.390870i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.5 - 4.33i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.828 - 1.43i)T + (-4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (0.166 + 0.288i)T + (-13.5 + 23.3i)T^{2} \) |
| 11 | \( 1 + (34.7 + 60.2i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 68.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-52.1 - 90.3i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-35.9 + 62.2i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-50.5 + 87.4i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 114.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (36.8 + 63.7i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-100. + 174. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 417.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 311.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-74.8 + 129. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (135. + 235. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (259. + 448. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (109. - 190. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (40.3 + 69.8i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 91.0T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-441. - 764. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (299. - 519. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 70.8T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-401. + 695. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 145.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.45714813332261348298166621982, −10.52461874193023130695906238314, −9.338884782269028861262826595645, −8.276507906668545452264591162466, −7.49784868730982563592372399676, −6.57534458767473028996289423591, −5.51469811992971654391829659759, −3.70228928354622675091220048225, −2.71662929620870717726493637102, −0.25902356103102124154274418768,
1.61376493846494536196306927965, 2.73864052097011946902306800575, 4.80490816642384802691205172823, 5.33398424567777095260782441731, 7.26538347407309511944175296251, 7.63557832581118444293986075974, 9.515920959092606088462597290265, 9.851892588746107474740197889508, 10.73055032148975724227331538696, 11.97025751023737891031165929479