Properties

Label 2-245-245.103-c1-0-3
Degree $2$
Conductor $245$
Sign $-0.825 - 0.564i$
Analytic cond. $1.95633$
Root an. cond. $1.39869$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0769 + 0.104i)2-s + (−1.66 + 0.314i)3-s + (0.584 + 1.89i)4-s + (−1.50 − 1.64i)5-s + (0.0950 − 0.197i)6-s + (2.27 + 1.34i)7-s + (−0.486 − 0.170i)8-s + (−0.131 + 0.0517i)9-s + (0.288 − 0.0303i)10-s + (−1.23 + 3.15i)11-s + (−1.56 − 2.96i)12-s + (−6.14 − 0.692i)13-s + (−0.315 + 0.134i)14-s + (3.02 + 2.26i)15-s + (−3.22 + 2.19i)16-s + (−0.450 − 0.0168i)17-s + ⋯
L(s)  = 1  + (−0.0543 + 0.0736i)2-s + (−0.959 + 0.181i)3-s + (0.292 + 0.947i)4-s + (−0.674 − 0.737i)5-s + (0.0387 − 0.0805i)6-s + (0.861 + 0.507i)7-s + (−0.172 − 0.0602i)8-s + (−0.0439 + 0.0172i)9-s + (0.0910 − 0.00961i)10-s + (−0.372 + 0.950i)11-s + (−0.452 − 0.855i)12-s + (−1.70 − 0.191i)13-s + (−0.0842 + 0.0358i)14-s + (0.781 + 0.585i)15-s + (−0.805 + 0.549i)16-s + (−0.109 − 0.00408i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.825 - 0.564i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.825 - 0.564i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $-0.825 - 0.564i$
Analytic conductor: \(1.95633\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{245} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :1/2),\ -0.825 - 0.564i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.150483 + 0.486279i\)
\(L(\frac12)\) \(\approx\) \(0.150483 + 0.486279i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (1.50 + 1.64i)T \)
7 \( 1 + (-2.27 - 1.34i)T \)
good2 \( 1 + (0.0769 - 0.104i)T + (-0.589 - 1.91i)T^{2} \)
3 \( 1 + (1.66 - 0.314i)T + (2.79 - 1.09i)T^{2} \)
11 \( 1 + (1.23 - 3.15i)T + (-8.06 - 7.48i)T^{2} \)
13 \( 1 + (6.14 + 0.692i)T + (12.6 + 2.89i)T^{2} \)
17 \( 1 + (0.450 + 0.0168i)T + (16.9 + 1.27i)T^{2} \)
19 \( 1 + (3.38 - 5.86i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.143 + 3.82i)T + (-22.9 + 1.71i)T^{2} \)
29 \( 1 + (-3.87 + 0.883i)T + (26.1 - 12.5i)T^{2} \)
31 \( 1 + (-4.62 + 2.67i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (1.20 - 0.637i)T + (20.8 - 30.5i)T^{2} \)
41 \( 1 + (-5.04 - 10.4i)T + (-25.5 + 32.0i)T^{2} \)
43 \( 1 + (-2.89 - 8.27i)T + (-33.6 + 26.8i)T^{2} \)
47 \( 1 + (4.33 + 3.19i)T + (13.8 + 44.9i)T^{2} \)
53 \( 1 + (0.663 + 0.350i)T + (29.8 + 43.7i)T^{2} \)
59 \( 1 + (0.851 + 11.3i)T + (-58.3 + 8.79i)T^{2} \)
61 \( 1 + (0.152 - 0.494i)T + (-50.4 - 34.3i)T^{2} \)
67 \( 1 + (0.342 + 0.0916i)T + (58.0 + 33.5i)T^{2} \)
71 \( 1 + (-1.67 + 7.34i)T + (-63.9 - 30.8i)T^{2} \)
73 \( 1 + (-5.86 + 4.32i)T + (21.5 - 69.7i)T^{2} \)
79 \( 1 + (-3.12 - 1.80i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (-1.61 - 14.3i)T + (-80.9 + 18.4i)T^{2} \)
89 \( 1 + (-1.14 - 2.92i)T + (-65.2 + 60.5i)T^{2} \)
97 \( 1 + (-7.85 - 7.85i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.24705382419367008716706400146, −11.82614461017182725113573629415, −10.84076487945981503817511254575, −9.632039108801118986926149275902, −8.101302420144672118506629922323, −7.932672472760577762970604628435, −6.44927240415275897494447143772, −4.96638100910726892007359851128, −4.46839132028482846092379438326, −2.43296062557752847705474106393, 0.43937158932039992642674523074, 2.59562867832540792362280618640, 4.60766521261094333541853112998, 5.50979580318587182846714925409, 6.71057279999473653801263877141, 7.38977037672313899123291431962, 8.797083932051176537241408279686, 10.31157516970134815932213959126, 10.85735155900737532616855854613, 11.49953739043872111114774962278

Graph of the $Z$-function along the critical line