Properties

Label 2-245-1.1-c9-0-52
Degree $2$
Conductor $245$
Sign $1$
Analytic cond. $126.183$
Root an. cond. $11.2331$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 28·2-s + 116·3-s + 272·4-s − 625·5-s + 3.24e3·6-s − 6.72e3·8-s − 6.22e3·9-s − 1.75e4·10-s − 2.55e4·11-s + 3.15e4·12-s + 4.23e4·13-s − 7.25e4·15-s − 3.27e5·16-s + 5.26e5·17-s − 1.74e5·18-s + 3.50e5·19-s − 1.70e5·20-s − 7.15e5·22-s − 6.21e5·23-s − 7.79e5·24-s + 3.90e5·25-s + 1.18e6·26-s − 3.00e6·27-s + 6.72e6·29-s − 2.03e6·30-s + 6.41e6·31-s − 5.72e6·32-s + ⋯
L(s)  = 1  + 1.23·2-s + 0.826·3-s + 0.531·4-s − 0.447·5-s + 1.02·6-s − 0.580·8-s − 0.316·9-s − 0.553·10-s − 0.526·11-s + 0.439·12-s + 0.410·13-s − 0.369·15-s − 1.24·16-s + 1.52·17-s − 0.391·18-s + 0.616·19-s − 0.237·20-s − 0.651·22-s − 0.463·23-s − 0.479·24-s + 1/5·25-s + 0.508·26-s − 1.08·27-s + 1.76·29-s − 0.457·30-s + 1.24·31-s − 0.965·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(126.183\)
Root analytic conductor: \(11.2331\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(4.851182217\)
\(L(\frac12)\) \(\approx\) \(4.851182217\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + p^{4} T \)
7 \( 1 \)
good2 \( 1 - 7 p^{2} T + p^{9} T^{2} \)
3 \( 1 - 116 T + p^{9} T^{2} \)
11 \( 1 + 25548 T + p^{9} T^{2} \)
13 \( 1 - 42306 T + p^{9} T^{2} \)
17 \( 1 - 526342 T + p^{9} T^{2} \)
19 \( 1 - 350060 T + p^{9} T^{2} \)
23 \( 1 + 621976 T + p^{9} T^{2} \)
29 \( 1 - 6720430 T + p^{9} T^{2} \)
31 \( 1 - 6412208 T + p^{9} T^{2} \)
37 \( 1 + 2317682 T + p^{9} T^{2} \)
41 \( 1 - 10224678 T + p^{9} T^{2} \)
43 \( 1 - 30114004 T + p^{9} T^{2} \)
47 \( 1 - 23644912 T + p^{9} T^{2} \)
53 \( 1 - 57292654 T + p^{9} T^{2} \)
59 \( 1 + 84934780 T + p^{9} T^{2} \)
61 \( 1 + 14677822 T + p^{9} T^{2} \)
67 \( 1 + 244557812 T + p^{9} T^{2} \)
71 \( 1 - 61901952 T + p^{9} T^{2} \)
73 \( 1 - 283763726 T + p^{9} T^{2} \)
79 \( 1 - 276107480 T + p^{9} T^{2} \)
83 \( 1 - 72995956 T + p^{9} T^{2} \)
89 \( 1 - 896368470 T + p^{9} T^{2} \)
97 \( 1 + 1205809578 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.60059742670023461335473608538, −9.426438667594054551305704645620, −8.388209578007339359698255062721, −7.63663880485100099252242119864, −6.19229583255996524076856223336, −5.29758289969717486531659400351, −4.17798043047802162957861052153, −3.22404943495095347836639843266, −2.60580374080757144434534781033, −0.804447853208557462829340316134, 0.804447853208557462829340316134, 2.60580374080757144434534781033, 3.22404943495095347836639843266, 4.17798043047802162957861052153, 5.29758289969717486531659400351, 6.19229583255996524076856223336, 7.63663880485100099252242119864, 8.388209578007339359698255062721, 9.426438667594054551305704645620, 10.60059742670023461335473608538

Graph of the $Z$-function along the critical line