L(s) = 1 | − 8·2-s − 3-s + 32·4-s − 25·5-s + 8·6-s − 242·9-s + 200·10-s − 453·11-s − 32·12-s + 969·13-s + 25·15-s − 1.02e3·16-s − 1.63e3·17-s + 1.93e3·18-s + 1.55e3·19-s − 800·20-s + 3.62e3·22-s − 1.65e3·23-s + 625·25-s − 7.75e3·26-s + 485·27-s − 4.98e3·29-s − 200·30-s − 1.19e3·31-s + 8.19e3·32-s + 453·33-s + 1.30e4·34-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 0.0641·3-s + 4-s − 0.447·5-s + 0.0907·6-s − 0.995·9-s + 0.632·10-s − 1.12·11-s − 0.0641·12-s + 1.59·13-s + 0.0286·15-s − 16-s − 1.37·17-s + 1.40·18-s + 0.985·19-s − 0.447·20-s + 1.59·22-s − 0.651·23-s + 1/5·25-s − 2.24·26-s + 0.128·27-s − 1.10·29-s − 0.0405·30-s − 0.222·31-s + 1.41·32-s + 0.0724·33-s + 1.94·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.4079287788\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4079287788\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + p^{2} T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + p^{3} T + p^{5} T^{2} \) |
| 3 | \( 1 + T + p^{5} T^{2} \) |
| 11 | \( 1 + 453 T + p^{5} T^{2} \) |
| 13 | \( 1 - 969 T + p^{5} T^{2} \) |
| 17 | \( 1 + 1637 T + p^{5} T^{2} \) |
| 19 | \( 1 - 1550 T + p^{5} T^{2} \) |
| 23 | \( 1 + 1654 T + p^{5} T^{2} \) |
| 29 | \( 1 + 4985 T + p^{5} T^{2} \) |
| 31 | \( 1 + 1192 T + p^{5} T^{2} \) |
| 37 | \( 1 + 11018 T + p^{5} T^{2} \) |
| 41 | \( 1 - 1728 T + p^{5} T^{2} \) |
| 43 | \( 1 + 10814 T + p^{5} T^{2} \) |
| 47 | \( 1 + 26237 T + p^{5} T^{2} \) |
| 53 | \( 1 - 25936 T + p^{5} T^{2} \) |
| 59 | \( 1 - 4580 T + p^{5} T^{2} \) |
| 61 | \( 1 - 12488 T + p^{5} T^{2} \) |
| 67 | \( 1 + 15848 T + p^{5} T^{2} \) |
| 71 | \( 1 - 51792 T + p^{5} T^{2} \) |
| 73 | \( 1 + 4846 T + p^{5} T^{2} \) |
| 79 | \( 1 - 62765 T + p^{5} T^{2} \) |
| 83 | \( 1 - 23644 T + p^{5} T^{2} \) |
| 89 | \( 1 - 147300 T + p^{5} T^{2} \) |
| 97 | \( 1 - 8343 T + p^{5} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.09054695425803143104270803503, −10.28020073412302408694023285859, −9.041986878948939935928688889782, −8.439833256553057780905651756435, −7.67358664499193293046329060050, −6.47306982880801984971813779089, −5.17476642122757749835724493930, −3.51970268882922076779846921782, −2.00020368014319854163554978379, −0.45177147819378609656417548347,
0.45177147819378609656417548347, 2.00020368014319854163554978379, 3.51970268882922076779846921782, 5.17476642122757749835724493930, 6.47306982880801984971813779089, 7.67358664499193293046329060050, 8.439833256553057780905651756435, 9.041986878948939935928688889782, 10.28020073412302408694023285859, 11.09054695425803143104270803503