L(s) = 1 | + 9.75·2-s − 23.6·3-s + 63.0·4-s − 25·5-s − 230.·6-s + 303.·8-s + 315.·9-s − 243.·10-s + 160.·11-s − 1.49e3·12-s + 1.07e3·13-s + 590.·15-s + 937.·16-s − 1.63e3·17-s + 3.07e3·18-s − 2.05e3·19-s − 1.57e3·20-s + 1.56e3·22-s − 4.84e3·23-s − 7.16e3·24-s + 625·25-s + 1.05e4·26-s − 1.71e3·27-s − 4.20e3·29-s + 5.76e3·30-s − 8.39e3·31-s − 557.·32-s + ⋯ |
L(s) = 1 | + 1.72·2-s − 1.51·3-s + 1.97·4-s − 0.447·5-s − 2.61·6-s + 1.67·8-s + 1.29·9-s − 0.770·10-s + 0.399·11-s − 2.98·12-s + 1.77·13-s + 0.678·15-s + 0.915·16-s − 1.37·17-s + 2.23·18-s − 1.30·19-s − 0.881·20-s + 0.687·22-s − 1.90·23-s − 2.53·24-s + 0.200·25-s + 3.05·26-s − 0.453·27-s − 0.928·29-s + 1.16·30-s − 1.56·31-s − 0.0962·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + 25T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 9.75T + 32T^{2} \) |
| 3 | \( 1 + 23.6T + 243T^{2} \) |
| 11 | \( 1 - 160.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 1.07e3T + 3.71e5T^{2} \) |
| 17 | \( 1 + 1.63e3T + 1.41e6T^{2} \) |
| 19 | \( 1 + 2.05e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 4.84e3T + 6.43e6T^{2} \) |
| 29 | \( 1 + 4.20e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 8.39e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 1.03e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 9.95e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 2.78e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + 2.55e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.13e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 3.46e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 8.24e3T + 8.44e8T^{2} \) |
| 67 | \( 1 + 1.75e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 1.90e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 5.22e4T + 2.07e9T^{2} \) |
| 79 | \( 1 + 2.70e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 4.18e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 9.38e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.64e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23827163639329255782207383717, −10.58060806370395204539822974620, −8.676694493240489459129001180035, −7.03307955255212879736421347669, −6.16738500053545199408542287266, −5.71706734296480724850753662888, −4.32008652434463041245931443570, −3.86964170333328808833306783554, −1.86556562789027404657514160381, 0,
1.86556562789027404657514160381, 3.86964170333328808833306783554, 4.32008652434463041245931443570, 5.71706734296480724850753662888, 6.16738500053545199408542287266, 7.03307955255212879736421347669, 8.676694493240489459129001180035, 10.58060806370395204539822974620, 11.23827163639329255782207383717