L(s) = 1 | + 2.58·2-s − 6.65·3-s − 1.31·4-s + 5·5-s − 17.2·6-s − 24.0·8-s + 17.3·9-s + 12.9·10-s + 38.2·11-s + 8.74·12-s − 19.3·13-s − 33.2·15-s − 51.7·16-s + 87.2·17-s + 44.7·18-s + 44.2·19-s − 6.56·20-s + 98.9·22-s + 218.·23-s + 160.·24-s + 25·25-s − 50.0·26-s + 64.4·27-s − 46.9·29-s − 86.0·30-s − 194.·31-s + 58.8·32-s + ⋯ |
L(s) = 1 | + 0.914·2-s − 1.28·3-s − 0.164·4-s + 0.447·5-s − 1.17·6-s − 1.06·8-s + 0.641·9-s + 0.408·10-s + 1.04·11-s + 0.210·12-s − 0.412·13-s − 0.572·15-s − 0.808·16-s + 1.24·17-s + 0.586·18-s + 0.534·19-s − 0.0734·20-s + 0.958·22-s + 1.97·23-s + 1.36·24-s + 0.200·25-s − 0.377·26-s + 0.459·27-s − 0.300·29-s − 0.523·30-s − 1.12·31-s + 0.324·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.712953511\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.712953511\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - 5T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 2.58T + 8T^{2} \) |
| 3 | \( 1 + 6.65T + 27T^{2} \) |
| 11 | \( 1 - 38.2T + 1.33e3T^{2} \) |
| 13 | \( 1 + 19.3T + 2.19e3T^{2} \) |
| 17 | \( 1 - 87.2T + 4.91e3T^{2} \) |
| 19 | \( 1 - 44.2T + 6.85e3T^{2} \) |
| 23 | \( 1 - 218.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 46.9T + 2.43e4T^{2} \) |
| 31 | \( 1 + 194.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 366.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 339.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 226.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 11.6T + 1.03e5T^{2} \) |
| 53 | \( 1 + 209.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 616T + 2.05e5T^{2} \) |
| 61 | \( 1 + 320.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 14.5T + 3.00e5T^{2} \) |
| 71 | \( 1 + 952T + 3.57e5T^{2} \) |
| 73 | \( 1 + 824.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 156.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.03e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 170.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.05e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.78337554304876739216182815724, −11.07299026007667274256709614166, −9.775216624722443456069907555346, −9.000028564575324861953296554889, −7.24239593767487482425960679859, −6.12689537594100828896040468733, −5.45678844671800828457157010558, −4.58657810812247511058662225949, −3.19278770035578903475279401123, −0.928496654100638927623280253138,
0.928496654100638927623280253138, 3.19278770035578903475279401123, 4.58657810812247511058662225949, 5.45678844671800828457157010558, 6.12689537594100828896040468733, 7.24239593767487482425960679859, 9.000028564575324861953296554889, 9.775216624722443456069907555346, 11.07299026007667274256709614166, 11.78337554304876739216182815724