Properties

Label 2-2448-1.1-c3-0-113
Degree $2$
Conductor $2448$
Sign $-1$
Analytic cond. $144.436$
Root an. cond. $12.0181$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 13.9·5-s − 12.9·7-s + 49.9·11-s + 32.9·13-s + 17·17-s − 54.8·19-s − 82.0·23-s + 70.1·25-s − 289.·29-s − 232.·31-s − 181.·35-s − 227.·37-s − 437.·41-s + 158.·43-s + 159.·47-s − 174.·49-s − 376.·53-s + 698.·55-s − 185.·59-s + 861.·61-s + 460.·65-s + 178.·67-s − 1.16e3·71-s + 383.·73-s − 648.·77-s − 254·79-s + 447.·83-s + ⋯
L(s)  = 1  + 1.24·5-s − 0.700·7-s + 1.36·11-s + 0.702·13-s + 0.242·17-s − 0.662·19-s − 0.743·23-s + 0.561·25-s − 1.85·29-s − 1.34·31-s − 0.875·35-s − 1.01·37-s − 1.66·41-s + 0.563·43-s + 0.493·47-s − 0.509·49-s − 0.974·53-s + 1.71·55-s − 0.408·59-s + 1.80·61-s + 0.878·65-s + 0.325·67-s − 1.94·71-s + 0.614·73-s − 0.959·77-s − 0.361·79-s + 0.591·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2448 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2448\)    =    \(2^{4} \cdot 3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(144.436\)
Root analytic conductor: \(12.0181\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2448,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 - 17T \)
good5 \( 1 - 13.9T + 125T^{2} \)
7 \( 1 + 12.9T + 343T^{2} \)
11 \( 1 - 49.9T + 1.33e3T^{2} \)
13 \( 1 - 32.9T + 2.19e3T^{2} \)
19 \( 1 + 54.8T + 6.85e3T^{2} \)
23 \( 1 + 82.0T + 1.21e4T^{2} \)
29 \( 1 + 289.T + 2.43e4T^{2} \)
31 \( 1 + 232.T + 2.97e4T^{2} \)
37 \( 1 + 227.T + 5.06e4T^{2} \)
41 \( 1 + 437.T + 6.89e4T^{2} \)
43 \( 1 - 158.T + 7.95e4T^{2} \)
47 \( 1 - 159.T + 1.03e5T^{2} \)
53 \( 1 + 376.T + 1.48e5T^{2} \)
59 \( 1 + 185.T + 2.05e5T^{2} \)
61 \( 1 - 861.T + 2.26e5T^{2} \)
67 \( 1 - 178.T + 3.00e5T^{2} \)
71 \( 1 + 1.16e3T + 3.57e5T^{2} \)
73 \( 1 - 383.T + 3.89e5T^{2} \)
79 \( 1 + 254T + 4.93e5T^{2} \)
83 \( 1 - 447.T + 5.71e5T^{2} \)
89 \( 1 - 1.21e3T + 7.04e5T^{2} \)
97 \( 1 - 291.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.422024823698766335151986103207, −7.23949633469583897286916265738, −6.50099771903652399390639490435, −5.97982973241466508973774759988, −5.29799673283590802120098783548, −3.95667119618461294722235587627, −3.43409797141716385570576574969, −2.03194944621552592447389685025, −1.49271219230403387270106696696, 0, 1.49271219230403387270106696696, 2.03194944621552592447389685025, 3.43409797141716385570576574969, 3.95667119618461294722235587627, 5.29799673283590802120098783548, 5.97982973241466508973774759988, 6.50099771903652399390639490435, 7.23949633469583897286916265738, 8.422024823698766335151986103207

Graph of the $Z$-function along the critical line