L(s) = 1 | + 2·5-s − 4·11-s − 2·13-s − 17-s − 4·19-s − 25-s + 10·29-s − 8·31-s − 2·37-s − 10·41-s − 12·43-s − 7·49-s − 6·53-s − 8·55-s + 12·59-s − 10·61-s − 4·65-s + 12·67-s + 10·73-s + 8·79-s + 4·83-s − 2·85-s + 6·89-s − 8·95-s − 14·97-s + 10·101-s + 8·103-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 1.20·11-s − 0.554·13-s − 0.242·17-s − 0.917·19-s − 1/5·25-s + 1.85·29-s − 1.43·31-s − 0.328·37-s − 1.56·41-s − 1.82·43-s − 49-s − 0.824·53-s − 1.07·55-s + 1.56·59-s − 1.28·61-s − 0.496·65-s + 1.46·67-s + 1.17·73-s + 0.900·79-s + 0.439·83-s − 0.216·85-s + 0.635·89-s − 0.820·95-s − 1.42·97-s + 0.995·101-s + 0.788·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 17 | \( 1 + T \) |
good | 5 | \( 1 - 2 T + p T^{2} \) |
| 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 10 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 + 10 T + p T^{2} \) |
| 43 | \( 1 + 12 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 - 12 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.467961047217185243736660174457, −7.955859097314133791044966496465, −6.84651712139757264196140765804, −6.33169466753969442189844266176, −5.21730475246735557714050254853, −4.90718026477218821976639724467, −3.55640376879290048858690413154, −2.51899204061915291020295701141, −1.78111713369696792468537479439, 0,
1.78111713369696792468537479439, 2.51899204061915291020295701141, 3.55640376879290048858690413154, 4.90718026477218821976639724467, 5.21730475246735557714050254853, 6.33169466753969442189844266176, 6.84651712139757264196140765804, 7.955859097314133791044966496465, 8.467961047217185243736660174457