Properties

Label 2-242-1.1-c1-0-6
Degree $2$
Conductor $242$
Sign $1$
Analytic cond. $1.93237$
Root an. cond. $1.39010$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 0.381·3-s + 4-s + 3.23·5-s + 0.381·6-s − 2·7-s + 8-s − 2.85·9-s + 3.23·10-s + 0.381·12-s + 1.23·13-s − 2·14-s + 1.23·15-s + 16-s − 0.618·17-s − 2.85·18-s − 5.85·19-s + 3.23·20-s − 0.763·21-s + 1.23·23-s + 0.381·24-s + 5.47·25-s + 1.23·26-s − 2.23·27-s − 2·28-s + 4.47·29-s + 1.23·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.220·3-s + 0.5·4-s + 1.44·5-s + 0.155·6-s − 0.755·7-s + 0.353·8-s − 0.951·9-s + 1.02·10-s + 0.110·12-s + 0.342·13-s − 0.534·14-s + 0.319·15-s + 0.250·16-s − 0.149·17-s − 0.672·18-s − 1.34·19-s + 0.723·20-s − 0.166·21-s + 0.257·23-s + 0.0779·24-s + 1.09·25-s + 0.242·26-s − 0.430·27-s − 0.377·28-s + 0.830·29-s + 0.225·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(242\)    =    \(2 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1.93237\)
Root analytic conductor: \(1.39010\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 242,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.110881752\)
\(L(\frac12)\) \(\approx\) \(2.110881752\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
11 \( 1 \)
good3 \( 1 - 0.381T + 3T^{2} \)
5 \( 1 - 3.23T + 5T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
13 \( 1 - 1.23T + 13T^{2} \)
17 \( 1 + 0.618T + 17T^{2} \)
19 \( 1 + 5.85T + 19T^{2} \)
23 \( 1 - 1.23T + 23T^{2} \)
29 \( 1 - 4.47T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 + 3.70T + 37T^{2} \)
41 \( 1 - 5.61T + 41T^{2} \)
43 \( 1 + 8.56T + 43T^{2} \)
47 \( 1 + 6.47T + 47T^{2} \)
53 \( 1 + 1.52T + 53T^{2} \)
59 \( 1 + 8.61T + 59T^{2} \)
61 \( 1 + 2.47T + 61T^{2} \)
67 \( 1 - 11.0T + 67T^{2} \)
71 \( 1 + 5.23T + 71T^{2} \)
73 \( 1 - 10.3T + 73T^{2} \)
79 \( 1 - 13.4T + 79T^{2} \)
83 \( 1 - 9.32T + 83T^{2} \)
89 \( 1 + 8.09T + 89T^{2} \)
97 \( 1 - 7.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.41591394572359680257222272584, −11.14308816516032217922027637895, −10.23988494776451817843304961024, −9.296910195920915486863152315656, −8.312168975313695718293713980838, −6.54097981734495754034534956685, −6.12040232995040826334216587585, −4.94563136271973363431212875724, −3.28338095505031098489531796514, −2.15746909252528951425940770847, 2.15746909252528951425940770847, 3.28338095505031098489531796514, 4.94563136271973363431212875724, 6.12040232995040826334216587585, 6.54097981734495754034534956685, 8.312168975313695718293713980838, 9.296910195920915486863152315656, 10.23988494776451817843304961024, 11.14308816516032217922027637895, 12.41591394572359680257222272584

Graph of the $Z$-function along the critical line