Properties

Label 2-2415-1.1-c1-0-84
Degree $2$
Conductor $2415$
Sign $-1$
Analytic cond. $19.2838$
Root an. cond. $4.39134$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 5-s + 6-s − 7-s − 3·8-s + 9-s + 10-s − 2·11-s − 12-s − 14-s + 15-s − 16-s − 2·17-s + 18-s − 4·19-s − 20-s − 21-s − 2·22-s − 23-s − 3·24-s + 25-s + 27-s + 28-s + 2·29-s + 30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s − 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.603·11-s − 0.288·12-s − 0.267·14-s + 0.258·15-s − 1/4·16-s − 0.485·17-s + 0.235·18-s − 0.917·19-s − 0.223·20-s − 0.218·21-s − 0.426·22-s − 0.208·23-s − 0.612·24-s + 1/5·25-s + 0.192·27-s + 0.188·28-s + 0.371·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2415 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2415 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2415\)    =    \(3 \cdot 5 \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(19.2838\)
Root analytic conductor: \(4.39134\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2415} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2415,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
23 \( 1 + T \)
good2 \( 1 - T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.637722784116469488573377536593, −7.980575969591361942076476380490, −6.80822220326809741180186775801, −6.21201771793503819961190275333, −5.23120286111245474901132120557, −4.60683178776375675151189489990, −3.64004566877139155017957367582, −2.91303852892064451103233422936, −1.87354167562552720571818398862, 0, 1.87354167562552720571818398862, 2.91303852892064451103233422936, 3.64004566877139155017957367582, 4.60683178776375675151189489990, 5.23120286111245474901132120557, 6.21201771793503819961190275333, 6.80822220326809741180186775801, 7.980575969591361942076476380490, 8.637722784116469488573377536593

Graph of the $Z$-function along the critical line