Properties

Label 2-2400-1.1-c3-0-66
Degree $2$
Conductor $2400$
Sign $-1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 12·7-s + 9·9-s − 20·11-s + 58·13-s + 70·17-s − 92·19-s + 36·21-s − 112·23-s − 27·27-s + 66·29-s − 108·31-s + 60·33-s + 58·37-s − 174·39-s + 66·41-s + 388·43-s + 408·47-s − 199·49-s − 210·51-s − 474·53-s + 276·57-s − 540·59-s + 14·61-s − 108·63-s + 276·67-s + 336·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.647·7-s + 1/3·9-s − 0.548·11-s + 1.23·13-s + 0.998·17-s − 1.11·19-s + 0.374·21-s − 1.01·23-s − 0.192·27-s + 0.422·29-s − 0.625·31-s + 0.316·33-s + 0.257·37-s − 0.714·39-s + 0.251·41-s + 1.37·43-s + 1.26·47-s − 0.580·49-s − 0.576·51-s − 1.22·53-s + 0.641·57-s − 1.19·59-s + 0.0293·61-s − 0.215·63-s + 0.503·67-s + 0.586·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
good7 \( 1 + 12 T + p^{3} T^{2} \)
11 \( 1 + 20 T + p^{3} T^{2} \)
13 \( 1 - 58 T + p^{3} T^{2} \)
17 \( 1 - 70 T + p^{3} T^{2} \)
19 \( 1 + 92 T + p^{3} T^{2} \)
23 \( 1 + 112 T + p^{3} T^{2} \)
29 \( 1 - 66 T + p^{3} T^{2} \)
31 \( 1 + 108 T + p^{3} T^{2} \)
37 \( 1 - 58 T + p^{3} T^{2} \)
41 \( 1 - 66 T + p^{3} T^{2} \)
43 \( 1 - 388 T + p^{3} T^{2} \)
47 \( 1 - 408 T + p^{3} T^{2} \)
53 \( 1 + 474 T + p^{3} T^{2} \)
59 \( 1 + 540 T + p^{3} T^{2} \)
61 \( 1 - 14 T + p^{3} T^{2} \)
67 \( 1 - 276 T + p^{3} T^{2} \)
71 \( 1 + 96 T + p^{3} T^{2} \)
73 \( 1 - 790 T + p^{3} T^{2} \)
79 \( 1 - 308 T + p^{3} T^{2} \)
83 \( 1 - 1036 T + p^{3} T^{2} \)
89 \( 1 - 1210 T + p^{3} T^{2} \)
97 \( 1 + 1426 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.121985779443298893593156447530, −7.53438384046935713194458120841, −6.31862999860305620436195919815, −6.12712457424435070958923373272, −5.18126597890979425062731125142, −4.13501554239209220345306052308, −3.42554146853679706859891586572, −2.26606097685825236268782882592, −1.06663966272672750298423172366, 0, 1.06663966272672750298423172366, 2.26606097685825236268782882592, 3.42554146853679706859891586572, 4.13501554239209220345306052308, 5.18126597890979425062731125142, 6.12712457424435070958923373272, 6.31862999860305620436195919815, 7.53438384046935713194458120841, 8.121985779443298893593156447530

Graph of the $Z$-function along the critical line