Properties

Label 2-2400-1.1-c3-0-4
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 19.6·7-s + 9·9-s − 7.89·11-s − 74.5·13-s − 0.529·17-s − 89.7·19-s + 58.8·21-s + 174.·23-s − 27·27-s − 275.·29-s − 267.·31-s + 23.6·33-s + 11.3·37-s + 223.·39-s − 384.·41-s − 28.5·43-s + 289.·47-s + 41.8·49-s + 1.58·51-s + 256.·53-s + 269.·57-s − 174.·59-s − 732.·61-s − 176.·63-s − 498.·67-s − 524.·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.05·7-s + 0.333·9-s − 0.216·11-s − 1.59·13-s − 0.00755·17-s − 1.08·19-s + 0.611·21-s + 1.58·23-s − 0.192·27-s − 1.76·29-s − 1.54·31-s + 0.125·33-s + 0.0505·37-s + 0.918·39-s − 1.46·41-s − 0.101·43-s + 0.898·47-s + 0.122·49-s + 0.00436·51-s + 0.664·53-s + 0.626·57-s − 0.384·59-s − 1.53·61-s − 0.353·63-s − 0.908·67-s − 0.914·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2874823176\)
\(L(\frac12)\) \(\approx\) \(0.2874823176\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 \)
good7 \( 1 + 19.6T + 343T^{2} \)
11 \( 1 + 7.89T + 1.33e3T^{2} \)
13 \( 1 + 74.5T + 2.19e3T^{2} \)
17 \( 1 + 0.529T + 4.91e3T^{2} \)
19 \( 1 + 89.7T + 6.85e3T^{2} \)
23 \( 1 - 174.T + 1.21e4T^{2} \)
29 \( 1 + 275.T + 2.43e4T^{2} \)
31 \( 1 + 267.T + 2.97e4T^{2} \)
37 \( 1 - 11.3T + 5.06e4T^{2} \)
41 \( 1 + 384.T + 6.89e4T^{2} \)
43 \( 1 + 28.5T + 7.95e4T^{2} \)
47 \( 1 - 289.T + 1.03e5T^{2} \)
53 \( 1 - 256.T + 1.48e5T^{2} \)
59 \( 1 + 174.T + 2.05e5T^{2} \)
61 \( 1 + 732.T + 2.26e5T^{2} \)
67 \( 1 + 498.T + 3.00e5T^{2} \)
71 \( 1 - 763.T + 3.57e5T^{2} \)
73 \( 1 + 927.T + 3.89e5T^{2} \)
79 \( 1 + 217.T + 4.93e5T^{2} \)
83 \( 1 - 21.8T + 5.71e5T^{2} \)
89 \( 1 + 191.T + 7.04e5T^{2} \)
97 \( 1 + 885.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.869251372683342880174696392301, −7.47998583084770579207703852018, −7.15902113616109078784816594036, −6.30267635591806268666922163712, −5.45675416166174271728726119809, −4.78875369269426181060083124239, −3.74651286949643001999473561383, −2.82116969375403248776861386788, −1.79739884003427747230468093176, −0.23244026097565686757159438179, 0.23244026097565686757159438179, 1.79739884003427747230468093176, 2.82116969375403248776861386788, 3.74651286949643001999473561383, 4.78875369269426181060083124239, 5.45675416166174271728726119809, 6.30267635591806268666922163712, 7.15902113616109078784816594036, 7.47998583084770579207703852018, 8.869251372683342880174696392301

Graph of the $Z$-function along the critical line