Properties

Label 2-2400-1.1-c3-0-38
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 27.0·7-s + 9·9-s − 1.66·11-s − 18.2·13-s − 39.2·17-s + 157.·19-s − 81.0·21-s + 115.·23-s − 27·27-s − 136.·29-s − 27.8·31-s + 5.00·33-s + 358.·37-s + 54.6·39-s − 30.3·41-s + 212.·43-s − 630.·47-s + 386.·49-s + 117.·51-s + 568.·53-s − 471.·57-s + 209.·59-s + 429.·61-s + 243.·63-s − 775.·67-s − 347.·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.45·7-s + 0.333·9-s − 0.0457·11-s − 0.388·13-s − 0.559·17-s + 1.89·19-s − 0.841·21-s + 1.05·23-s − 0.192·27-s − 0.871·29-s − 0.161·31-s + 0.0263·33-s + 1.59·37-s + 0.224·39-s − 0.115·41-s + 0.754·43-s − 1.95·47-s + 1.12·49-s + 0.323·51-s + 1.47·53-s − 1.09·57-s + 0.461·59-s + 0.902·61-s + 0.486·63-s − 1.41·67-s − 0.606·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.378214224\)
\(L(\frac12)\) \(\approx\) \(2.378214224\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 \)
good7 \( 1 - 27.0T + 343T^{2} \)
11 \( 1 + 1.66T + 1.33e3T^{2} \)
13 \( 1 + 18.2T + 2.19e3T^{2} \)
17 \( 1 + 39.2T + 4.91e3T^{2} \)
19 \( 1 - 157.T + 6.85e3T^{2} \)
23 \( 1 - 115.T + 1.21e4T^{2} \)
29 \( 1 + 136.T + 2.43e4T^{2} \)
31 \( 1 + 27.8T + 2.97e4T^{2} \)
37 \( 1 - 358.T + 5.06e4T^{2} \)
41 \( 1 + 30.3T + 6.89e4T^{2} \)
43 \( 1 - 212.T + 7.95e4T^{2} \)
47 \( 1 + 630.T + 1.03e5T^{2} \)
53 \( 1 - 568.T + 1.48e5T^{2} \)
59 \( 1 - 209.T + 2.05e5T^{2} \)
61 \( 1 - 429.T + 2.26e5T^{2} \)
67 \( 1 + 775.T + 3.00e5T^{2} \)
71 \( 1 - 79.3T + 3.57e5T^{2} \)
73 \( 1 + 271.T + 3.89e5T^{2} \)
79 \( 1 - 206.T + 4.93e5T^{2} \)
83 \( 1 - 354.T + 5.71e5T^{2} \)
89 \( 1 + 529.T + 7.04e5T^{2} \)
97 \( 1 - 1.25e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.600679646051454852763906708306, −7.58769277925102383547031686184, −7.34660245051147705050748385187, −6.19856415855685810344869171828, −5.21850560970478424485349634809, −4.93361727687883798433438658923, −3.92335396605081613347306698235, −2.70855716070484730901650261145, −1.60295087555233565993620574381, −0.75331728777134877329591022896, 0.75331728777134877329591022896, 1.60295087555233565993620574381, 2.70855716070484730901650261145, 3.92335396605081613347306698235, 4.93361727687883798433438658923, 5.21850560970478424485349634809, 6.19856415855685810344869171828, 7.34660245051147705050748385187, 7.58769277925102383547031686184, 8.600679646051454852763906708306

Graph of the $Z$-function along the critical line